CA-YOLOv5: Detection model for healthy and diseased silkworms in mixed conditions based on improved YOLOv5

被引:4
|
作者
Shi, Hongkang [1 ,2 ]
Xiao, Wenfu [2 ]
Zhu, Shiping [1 ,3 ,4 ]
Li, Linbo [1 ,2 ]
Zhang, Jianfei [2 ]
机构
[1] Southwest Univ, Coll Engn & Technol, Chongqing 400700, Peoples R China
[2] Sichuan Acad Agr Sci, Sericultural Res Inst, Nanchong 637000, Sichuan, Peoples R China
[3] Yibin Acad Southwest Univ, Yibin 644000, Sichuan, Peoples R China
[4] Southwest Univ, State Key Lab Resource Insects, Chongqing 400700, Peoples R China
关键词
diseased silkworm detection; YOLOv5; mixed conditions; image attention mechanism; object detection;
D O I
10.25165/j.ijabe.20231606.7854
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The accurate identification and localization of diseased silkworms is an important task in the research of disease precision control technology and equipment development in the sericulture industry. However, the existing deep learning-based methods for this task are mainly based on image classification, which fails to provide the location information of diseased silkworms. To this end, this study proposed an object detection-based method for identifying and locating healthy and diseased silkworms. Images of mixed healthy and diseased silkworms were collected using a mobile phone, and the category and location of each silkworm were labeled using LabelImg as a labeling tool to construct an image dataset for object detection. Based on the one-step detection model YOLOv5s, the ConvNeXt-Attention-YOLOv5 (CA-YOLOv5) model was designed in which the large kernel with depth-wise separable convolution (7x7 dw-conv) of ConvNeXt was adopted to expand receptive fields and the channel attention mechanism ECANet was added to enhance the capability of feature extraction. Experiments showed that the mean average precision (mAP) values of CA-YOLOv5 for healthy and diseased silkworms reached 96.46%, which is 1.35% better than that achieved via YOLOv5s. At the same time, the overall performance of CA-YOLOv5 was significantly better than state-of-the-art one-step models, such as Single Shot MultiBox Detector (SSD), CenterNet, and EfficientDet, and even improved YOLOv5 using image attention mechanism and a lightweight backbone, like SENet-YOLOv5 and MobileNet-YOLOv5. The results of this study can provide an important basis for the accurate positioning of diseased silkworms in precision disease control technology and equipment development.
引用
收藏
页码:236 / 245
页数:10
相关论文
共 50 条
  • [21] KPE-YOLOv5: An Improved Small Target Detection Algorithm Based on YOLOv5
    Yang, Rujin
    Li, Wenfa
    Shang, Xinna
    Zhu, Deping
    Man, Xunyu
    ELECTRONICS, 2023, 12 (04)
  • [22] YOLOv5-ASFF: A Multistage Strawberry Detection Algorithm Based on Improved YOLOv5
    Li, Yaodi
    Xue, Jianxin
    Zhang, Mingyue
    Yin, Junyi
    Liu, Yang
    Qiao, Xindan
    Zheng, Decong
    Li, Zezhen
    AGRONOMY-BASEL, 2023, 13 (07):
  • [23] GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
    Zhao, Yue
    Chen, Bolun
    Liu, Bushi
    Yu, Cuiying
    Wang, Ling
    Wang, Shanshan
    SENSORS, 2023, 23 (17)
  • [24] HIC-YOLOv5: Improved YOLOv5 For Small Object Detection
    Tang, Shiyi
    Zhang, Shu
    Fang, Yini
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 6614 - 6619
  • [25] Fish detection method based on improved YOLOv5
    Li, Lei
    Shi, Guosheng
    Jiang, Tao
    AQUACULTURE INTERNATIONAL, 2023, 31 (05) : 2513 - 2530
  • [26] Traffic Sign Detection Based on Improved YOLOv5
    Zhou, Hua-Ping
    Xu, Chen-Chen
    Sun, Ke-Lei
    Journal of Computers (Taiwan), 2023, 34 (03) : 63 - 73
  • [27] Lymphocyte Detection Method Based on Improved YOLOv5
    Jiang, Peihe
    Li, Yi
    Liu, Ying
    Lu, Ning
    IEEE ACCESS, 2024, 12 : 772 - 781
  • [28] Outdoor Garbage Detection Based on Improved YOLOv5
    Chen Shengxuan
    Wang Aimin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (22)
  • [29] Fish detection method based on improved YOLOv5
    Lei Li
    Guosheng Shi
    Tao Jiang
    Aquaculture International, 2023, 31 : 2513 - 2530
  • [30] Helmet detection method based on improved YOLOv5
    Hou G.
    Chen Q.
    Yang Z.
    Zhang Y.
    Zhang D.
    Li H.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (02): : 329 - 342