Assessment of machine-learning methods for the prediction of STN using multi-source data in Fuzhou city, China

被引:0
|
作者
Sodango, Terefe Hanchiso [1 ]
Sha, Jinming [2 ,3 ,4 ]
Li, Xiaomei [5 ]
Bao, Zhongcong [2 ,3 ,6 ]
机构
[1] Wachemo Univ, Dept Nat Resource Management, Hossana, Ethiopia
[2] Fujian Normal Univ, State Key Lab Subtrop Mt Ecol, Minist Sci & Technol & Fujian Prov, Fuzhou, Peoples R China
[3] Fujian Normal Univ, Sch Geog Sci, Fuzhou, Peoples R China
[4] China Europe Ctr Environm & Landscape Management, Fuzhou, Peoples R China
[5] Fujian Normal Univ, Coll Environm Sci & Engn, Fuzhou, Peoples R China
[6] Fuzhou Invest & Surveying Inst Co Ltd, Fuzhou, Peoples R China
关键词
Machine-learning; STN; Remote sensing; Proximal sensing; Coastal area; SOIL ORGANIC-CARBON; TOTAL NITROGEN; MOISTURE-CONTENT; SPECTROSCOPY; CLASSIFICATION; CONTAMINATION; REGRESSION; STOCKS; MODEL;
D O I
10.1016/j.rsase.2023.100995
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study evaluated the performance of machine-learning approaches to predict Soil Total Nitrogen (STN) using remote sensing and environmental data in the coastal city of Fuzhou, Fujian Province, China. Multisource environmental data was combined to identify important variables for topsoil STN distribution prediction. Additionally, STN content was assessed based on environmental covariates. The results from this study showed that random forest (RF), support vector machine (SVM), artificial neural network (ANN), multi-linear regression (MLR), and locally weighted regression (LWR) can achieve high R2 values of 0.96, 0.92, 0.80, 0.97, and 0.93 with respective RMSECV values of 0.08, 0.35, 0.37, 0.43, and 0.65, respectively. Random Forest (RF) was the most effective model among these methods, with the corrosponding highest R2 and lowest RMSECV. RF and SVM models were used to select important predictors; accordingly, RF selected mainly vegetation indexes while SVM selected Visible-Near-Infrared (VIS-NIR) spectra of the soil. Additionally, STN contents had relationships with most environmental covariates derived from remote sensing, soil spectra, and topographic variables. Spectral transformations improved the correlations with STN where the second derivative and standard normal variate transformations produced the best results. This study suggests that machine-learning methods are practical approaches for the prediction of STN and can be used in similar complex coastal environments.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Forest Fire Prediction Using Multi-Source Deep Learning
    Mutakabbir, Abdul
    Lung, Chung-Horng
    Ajila, Samuel A.
    Zaman, Marzia
    Naik, Kshirasagar
    Purcell, Richard
    Sampalli, Srinivas
    BIG DATA TECHNOLOGIES AND APPLICATIONS, EAI INTERNATIONAL CONFERENCE, BDTA 2023, 2024, 555 : 135 - 146
  • [32] Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions
    Raza, Aamir
    Shahid, Muhammad Adnan
    Zaman, Muhammad
    Miao, Yuxin
    Huang, Yanbo
    Safdar, Muhammad
    Maqbool, Sheraz
    Muhammad, Nalain E.
    REMOTE SENSING, 2025, 17 (05)
  • [33] Machine Learning Fusion Multi-Source Data Features for Classification Prediction of Lunar Surface Geological Units
    Zuo, Wei
    Zeng, Xingguo
    Gao, Xingye
    Zhang, Zhoubin
    Liu, Dawei
    Li, Chunlai
    REMOTE SENSING, 2022, 14 (20)
  • [34] Multi-Source Precipitation Data Merging for Heavy Rainfall Events Based on Cokriging and Machine Learning Methods
    Zhang, Junmin
    Xu, Jianhui
    Dai, Xiaoai
    Ruan, Huihua
    Liu, Xulong
    Jing, Wenlong
    REMOTE SENSING, 2022, 14 (07)
  • [35] Downscaling soil moisture using multi-source data in China
    An, Ru
    Wang, Hui-Lin
    You, Jia-jun
    Wang, Ying
    Shen, Xiao-ji
    Gao, Wei
    Wang, Yi-nan
    Zhang, Yu
    Wang, Zhe
    Quaye-Ballardd, Jonathan Arthur
    Chen, Yuehong
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXII, 2016, 10004
  • [36] Prediction of the Remaining Useful Life of a Switch Machine, Based on Multi-Source Data
    Zheng, Yunshui
    Chen, Weimin
    Zhang, Yaning
    Bai, Dengyu
    SUSTAINABILITY, 2022, 14 (21)
  • [37] Prediction of postoperative complications after oesophagectomy using machine-learning methods
    Jung, Jin-On
    Pisula, Juan I.
    Bozek, Kasia
    Popp, Felix
    Fuchs, Hans F.
    Schroeder, Wolfgang
    Bruns, Christiane J.
    Schmidt, Thomas
    BRITISH JOURNAL OF SURGERY, 2023, 110 (10) : 1361 - 1366
  • [38] Statistical Machine-Learning Methods for Genomic Prediction Using the SKM Library
    Montesinos Lopez, Osval A.
    Mosqueda Gonzalez, Brandon Alejandro
    Montesinos Lopez, Abelardo
    Crossa, Jose
    GENES, 2023, 14 (05)
  • [39] Assessment of Landslide Susceptibility Using Different Machine Learning Methods in Longnan City, China
    Gao, Jiangping
    Shi, Xiangyang
    Li, Linghui
    Zhou, Ziqiang
    Wang, Junfeng
    SUSTAINABILITY, 2022, 14 (24)
  • [40] Integrating Multi-Source Remote Sensing to Assess Forest Aboveground Biomass in the Khingan Mountains of North-Eastern China Using Machine-Learning Algorithms
    Wang, Xiaoyi
    Liu, Caixia
    Lv, Guanting
    Xu, Jinfeng
    Cui, Guishan
    REMOTE SENSING, 2022, 14 (04)