机构:
Fujian Normal Univ, State Key Lab Subtrop Mt Ecol, Minist Sci & Technol & Fujian Prov, Fuzhou, Peoples R China
Fujian Normal Univ, Sch Geog Sci, Fuzhou, Peoples R China
China Europe Ctr Environm & Landscape Management, Fuzhou, Peoples R ChinaWachemo Univ, Dept Nat Resource Management, Hossana, Ethiopia
Sha, Jinming
[2
,3
,4
]
Li, Xiaomei
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Coll Environm Sci & Engn, Fuzhou, Peoples R ChinaWachemo Univ, Dept Nat Resource Management, Hossana, Ethiopia
Li, Xiaomei
[5
]
Bao, Zhongcong
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, State Key Lab Subtrop Mt Ecol, Minist Sci & Technol & Fujian Prov, Fuzhou, Peoples R China
Fujian Normal Univ, Sch Geog Sci, Fuzhou, Peoples R China
Fuzhou Invest & Surveying Inst Co Ltd, Fuzhou, Peoples R ChinaWachemo Univ, Dept Nat Resource Management, Hossana, Ethiopia
This study evaluated the performance of machine-learning approaches to predict Soil Total Nitrogen (STN) using remote sensing and environmental data in the coastal city of Fuzhou, Fujian Province, China. Multisource environmental data was combined to identify important variables for topsoil STN distribution prediction. Additionally, STN content was assessed based on environmental covariates. The results from this study showed that random forest (RF), support vector machine (SVM), artificial neural network (ANN), multi-linear regression (MLR), and locally weighted regression (LWR) can achieve high R2 values of 0.96, 0.92, 0.80, 0.97, and 0.93 with respective RMSECV values of 0.08, 0.35, 0.37, 0.43, and 0.65, respectively. Random Forest (RF) was the most effective model among these methods, with the corrosponding highest R2 and lowest RMSECV. RF and SVM models were used to select important predictors; accordingly, RF selected mainly vegetation indexes while SVM selected Visible-Near-Infrared (VIS-NIR) spectra of the soil. Additionally, STN contents had relationships with most environmental covariates derived from remote sensing, soil spectra, and topographic variables. Spectral transformations improved the correlations with STN where the second derivative and standard normal variate transformations produced the best results. This study suggests that machine-learning methods are practical approaches for the prediction of STN and can be used in similar complex coastal environments.
机构:
Yunnan Univ Tradit Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Peoples R China
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Peoples R ChinaYunnan Univ Tradit Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Peoples R China
Zhang, Yanying
Zhu, Xinyan
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Peoples R ChinaYunnan Univ Tradit Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Peoples R China
Zhu, Xinyan
Wang, Yuanzhong
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Peoples R ChinaYunnan Univ Tradit Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Peoples R China
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Univ Chinese Acad Sci, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Yang, Yujie
Wang, Zhige
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Environm & Resource Sci, Inst Agr Remote Sensing & Informat Technol Applic, Hangzhou 310058, Peoples R China
Zhejiang Univ, Coll Environm & Resource Sci, Key Lab Environm Remediat & Ecol Hlth, Minist Educ, Hangzhou 310058, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Wang, Zhige
Cao, Chunxiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Univ Chinese Acad Sci, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Cao, Chunxiang
Xu, Min
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Univ Chinese Acad Sci, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Xu, Min
Yang, Xinwei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Yang, Xinwei
Wang, Kaimin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Univ Chinese Acad Sci, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Wang, Kaimin
Guo, Heyi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Univ Chinese Acad Sci, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Guo, Heyi
Gao, Xiaotong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Univ Chinese Acad Sci, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Gao, Xiaotong
Li, Jingbo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Univ Chinese Acad Sci, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Li, Jingbo
Shi, Zhou
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Environm & Resource Sci, Inst Agr Remote Sensing & Informat Technol Applic, Hangzhou 310058, Peoples R China
Zhejiang Univ, Coll Environm & Resource Sci, Key Lab Environm Remediat & Ecol Hlth, Minist Educ, Hangzhou 310058, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
机构:
Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R ChinaHohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
Yang, Zhangjian
He, Qisheng
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R ChinaHohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
He, Qisheng
Miao, Shuqi
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R ChinaHohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
Miao, Shuqi
Wei, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R ChinaHohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
Wei, Feng
Yu, Mingxiao
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R ChinaHohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
机构:
Tongji Univ, Res Ctr Underground Space, Shanghai 20092, Peoples R China
Tongji Univ, Dept Geotech Engn, Shanghai 20092, Peoples R ChinaTongji Univ, Res Ctr Underground Space, Shanghai 20092, Peoples R China
Dong, Yun-Hao
Peng, Fang-Le
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Res Ctr Underground Space, Shanghai 20092, Peoples R China
Tongji Univ, Dept Geotech Engn, Shanghai 20092, Peoples R ChinaTongji Univ, Res Ctr Underground Space, Shanghai 20092, Peoples R China
Peng, Fang-Le
Bao, Zong-Hui
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Res Ctr Underground Space, Shanghai 20092, Peoples R China
Tongji Univ, Dept Geotech Engn, Shanghai 20092, Peoples R ChinaTongji Univ, Res Ctr Underground Space, Shanghai 20092, Peoples R China
Bao, Zong-Hui
Qiao, Yong-Kang
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Res Ctr Underground Space, Shanghai 20092, Peoples R China
Tongji Univ, Dept Geotech Engn, Shanghai 20092, Peoples R ChinaTongji Univ, Res Ctr Underground Space, Shanghai 20092, Peoples R China