Transfer Learning With Spatial-Temporal Graph Convolutional Network for Traffic Prediction

被引:17
|
作者
Yao, Zhixiu [1 ]
Xia, Shichao [2 ]
Li, Yun [1 ]
Wu, Guangfu [2 ]
Zuo, Linli [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Software Engn, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Roads; Transfer learning; Convolutional neural networks; Feature extraction; Task analysis; Data models; Convolution; Intelligent transportation system; traffic prediction; graph convolutional network; transfer learning; adversarial domain adaptation; FLOW PREDICTION; DEEP;
D O I
10.1109/TITS.2023.3250424
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate spatial-temporal traffic modeling and prediction play an important role in intelligent transportation systems (ITS). Recently, various deep learning methods such as graph convolutional networks (GCNs) and recurrent neural networks (RNNs) have been widely adopted in traffic prediction tasks to extract spatial-temporal dependencies based on a large volume of high-quality training data. However, there exist data scarcity problems in some transportation networks, and in these cases, the performance of traditional GCNs and RNNs based approaches will degrade sharply. To address this problem, this paper proposes an adversarial domain adaptation with spatial-temporal graph convolutional network (Ada-STGCN) model to predict traffic indicators for a data-scarce target road network by transferring the knowledge from a data-sufficient source road network. Specifically, Ada-STGCN first develops a spatial-temporal graph convolutional network that combines the GCN and gated recurrent unit (GRU) to extract spatial-temporal dependencies from source and target road networks. Then, the technique of adversarial domain adaptation is integrated with the spatial-temporal graph convolutional network to learn discriminative and domain-invariant features to facilitate knowledge transfer. Experimental results on the real-world traffic datasets in the traffic flow prediction task demonstrate that our model yields the best prediction performance compared to state-of-the-art baseline methods.
引用
收藏
页码:8592 / 8605
页数:14
相关论文
共 50 条
  • [41] A dynamical spatial-temporal graph neural network for traffic demand prediction
    Huang, Feihu
    Yi, Peiyu
    Wang, Jince
    Li, Mengshi
    Peng, Jian
    Xiong, Xi
    INFORMATION SCIENCES, 2022, 594 : 286 - 304
  • [42] Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Sun, Yanfeng
    Jiang, Xiangheng
    Hu, Yongli
    Duan, Fuqing
    Guo, Kan
    Wang, Boyue
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23680 - 23693
  • [43] Spatial-temporal graph convolutional networks for traffic flow prediction considering multiple traffic parameters
    Su, Ziyi
    Liu, Tong
    Hao, Xiatong
    Hu, Xiaojian
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (16): : 18293 - 18312
  • [44] Spatial-temporal graph convolutional networks for traffic flow prediction considering multiple traffic parameters
    Ziyi Su
    Tong Liu
    Xiatong Hao
    Xiaojian Hu
    The Journal of Supercomputing, 2023, 79 : 18293 - 18312
  • [45] Multimodal joint prediction of traffic spatial-temporal data with graph sparse attention mechanism and bidirectional temporal convolutional network
    Zhang, Dongran
    Yan, Jiangnan
    Polat, Kemal
    Alhudhaif, Adi
    Li, Jun
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [46] Graph learning-based spatial-temporal graph convolutional neural networks for traffic forecasting
    Hu, Na
    Zhang, Dafang
    Xie, Kun
    Liang, Wei
    Hsieh, Meng-Yen
    CONNECTION SCIENCE, 2022, 34 (01) : 429 - 448
  • [47] Transient Voltage Prediction Method Based on Spatial-Temporal Graph Convolutional Network
    Yang, Xintong
    Dong, Yu
    Wang, Jing
    Wang, Changjiang
    2022 9TH INTERNATIONAL FORUM ON ELECTRICAL ENGINEERING AND AUTOMATION, IFEEA, 2022, : 1174 - 1178
  • [48] Short-Term Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network with ARMA Filter
    Xiao, Peicheng
    Cao, Yang
    Shen, Qinqin
    Shi, Quan
    Computer Engineering and Applications, 2024, 60 (21) : 308 - 314
  • [49] Traffic Flow Prediction Based on Spatial-Temporal Attention Convolutional Neural Network
    Xia Y.
    Liu M.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2023, 58 (02): : 340 - 347
  • [50] Spatial-temporal correlation graph convolutional networks for traffic forecasting
    Huang, Ru
    Chen, Zijian
    Zhai, Guangtao
    He, Jianhua
    Chu, Xiaoli
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (07) : 1380 - 1394