Transfer Learning With Spatial-Temporal Graph Convolutional Network for Traffic Prediction

被引:17
|
作者
Yao, Zhixiu [1 ]
Xia, Shichao [2 ]
Li, Yun [1 ]
Wu, Guangfu [2 ]
Zuo, Linli [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Software Engn, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Roads; Transfer learning; Convolutional neural networks; Feature extraction; Task analysis; Data models; Convolution; Intelligent transportation system; traffic prediction; graph convolutional network; transfer learning; adversarial domain adaptation; FLOW PREDICTION; DEEP;
D O I
10.1109/TITS.2023.3250424
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate spatial-temporal traffic modeling and prediction play an important role in intelligent transportation systems (ITS). Recently, various deep learning methods such as graph convolutional networks (GCNs) and recurrent neural networks (RNNs) have been widely adopted in traffic prediction tasks to extract spatial-temporal dependencies based on a large volume of high-quality training data. However, there exist data scarcity problems in some transportation networks, and in these cases, the performance of traditional GCNs and RNNs based approaches will degrade sharply. To address this problem, this paper proposes an adversarial domain adaptation with spatial-temporal graph convolutional network (Ada-STGCN) model to predict traffic indicators for a data-scarce target road network by transferring the knowledge from a data-sufficient source road network. Specifically, Ada-STGCN first develops a spatial-temporal graph convolutional network that combines the GCN and gated recurrent unit (GRU) to extract spatial-temporal dependencies from source and target road networks. Then, the technique of adversarial domain adaptation is integrated with the spatial-temporal graph convolutional network to learn discriminative and domain-invariant features to facilitate knowledge transfer. Experimental results on the real-world traffic datasets in the traffic flow prediction task demonstrate that our model yields the best prediction performance compared to state-of-the-art baseline methods.
引用
收藏
页码:8592 / 8605
页数:14
相关论文
共 50 条
  • [31] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243
  • [32] TrafficSCINet: An Adaptive Spatial-Temporal Graph Convolutional Network for Traffic Flow Forecasting
    Gong, Kai
    Han, Shiyuan
    Yang, Xiaohui
    Yu, Weiwei
    Guan, Yuanlin
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 14086 LNCS : 628 - 639
  • [33] TrafficSCINet: An Adaptive Spatial-Temporal Graph Convolutional Network for Traffic Flow Forecasting
    Gong, Kai
    Han, Shiyuan
    Yang, Xiaohui
    Yu, Weiwei
    Guan, Yuanlin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 628 - 639
  • [34] STLGCN: Spatial-Temporal Graph Convolutional Network for Long Term Traffic Forecasting
    Chen, Xuewen
    Peng, Peng
    Tang, Haina
    BIG DATA TECHNOLOGIES AND APPLICATIONS, EAI INTERNATIONAL CONFERENCE, BDTA 2023, 2024, 555 : 49 - 61
  • [35] DSTAGCN: Dynamic Spatial-Temporal Adjacent Graph Convolutional Network for Traffic Forecasting
    Zheng, Qi
    Zhang, Yaying
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (01) : 241 - 253
  • [36] Spatial-Temporal Traffic Data Imputation via Graph Attention Convolutional Network
    Ye, Yongchao
    Zhang, Shiyao
    Yu, James J. Q.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT I, 2021, 12891 : 241 - 252
  • [37] Adaptive spatial-temporal graph attention network for traffic speed prediction
    张玺君
    ZHANG Baoqi
    ZHANG Hong
    NIE Shengyuan
    ZHANG Xianli
    HighTechnologyLetters, 2024, 30 (03) : 221 - 230
  • [38] Adaptive spatial-temporal graph attention network for traffic speed prediction
    Zhang, Xijun
    Zhang, Baoqi
    Zhang, Hong
    Nie, Shengyuan
    Zhang, Xianli
    High Technology Letters, 2024, 30 (03) : 221 - 230
  • [39] Spatial-Temporal Complex Graph Convolution Network for Traffic Flow Prediction
    Bao, Yinxin
    Huang, Jiashuang
    Shen, Qinqin
    Cao, Yang
    Ding, Weiping
    Shi, Zhenquan
    Shi, Quan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [40] Modeling Global Spatial-Temporal Graph Attention Network for Traffic Prediction
    Sun, Bin
    Zhao, Duan
    Shi, Xinguo
    He, Yongxin
    IEEE ACCESS, 2021, 9 : 8581 - 8594