Global Search and Analysis for the Nonconvex Two-Level l1 Penalty

被引:1
|
作者
He, Fan [1 ,2 ]
He, Mingzhen [1 ,2 ]
Shi, Lei [3 ,4 ]
Huang, Xiaolin [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, MOE Key Lab Syst Control & Informat Proc, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai 200240, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[4] Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressive sensing; global search algorithm; kernel-based quantile regression; nonconvex optimization; two-level l(1) penalty; NONCONCAVE PENALIZED LIKELIHOOD; SOFT MARGIN CLASSIFIERS; VARIABLE SELECTION; SPARSE; REGULARIZATION; RECOGNITION; REGRESSION; RECOVERY;
D O I
10.1109/TNNLS.2022.3201052
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Imposing suitably designed nonconvex regularization is effective to enhance sparsity, but the corresponding global search algorithm has not been well established. In this article, we propose a global search algorithm for the nonconvex twolevel P t penalty based on its piecewise linear property and apply it to machine learning tasks. With the search capability, the optimization performance of the proposed algorithm could be improved, resulting in better sparsity and accuracy than most state-of-the-art global and local algorithms. Besides, we also provide an approximation analysis to demonstrate the effectiveness of our global search algorithm in sparse quantile regression.
引用
收藏
页码:3886 / 3899
页数:14
相关论文
共 50 条
  • [31] Dictionary learning with the l1/2-regularizer and the coherence penalty and its convergence analysis
    Li, Zhenni
    Hayashi, Takafumi
    Ding, Shuxue
    Li, Yujie
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (08) : 1351 - 1364
  • [32] An effective two-level proof-number search algorithm
    Winands, MHM
    Uiterwijk, JWHM
    van den Herik, HJ
    THEORETICAL COMPUTER SCIENCE, 2004, 313 (03) : 511 - 525
  • [33] A Two-Level Cache for Distributed Information Retrieval in Search Engines
    Zhang, Weizhe
    He, Hui
    Ye, Jianwei
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [34] Similarity search in transaction databases with a two-level bounding mechanism
    Chuang, Jo-Chun
    Cho, Chung-Wen
    Chen, Arbee L. P.
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PROCEEDINGS, 2006, 3882 : 572 - 586
  • [35] Two-level search design for main-effect plus two plan
    Chatterjee, K
    Deng, LY
    Lin, DKJ
    METRIKA, 2001, 54 (03) : 233 - 245
  • [36] Two-level search design for main-effect plus two plan
    Chatterjee K.
    Deng L.-Y.
    Lin D.K.J.
    Metrika, 2002, 54 (3) : 233 - 240
  • [37] Penalized regression combining the L1 norm and a correlation based penalty
    Anbari M.E.
    Mkhadri A.
    Sankhya B, 2014, 76 (1) : 82 - 102
  • [38] On Smoothing l1 Exact Penalty Function for Constrained Optimization Problems
    Xu, Xinsheng
    Dang, Chuangyin
    Chan, Felix T. S.
    Wang, Yongli
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (01) : 1 - 18
  • [39] Two-level additive Schwarz preconditioners for C0 interior penalty methods
    Brenner, SC
    Wang, KN
    NUMERISCHE MATHEMATIK, 2005, 102 (02) : 231 - 255
  • [40] Prune Deep Neural Networks With the Modified L1/2 Penalty
    Chang, Jing
    Sha, Jin
    IEEE ACCESS, 2019, 7 : 2273 - 2280