Global Search and Analysis for the Nonconvex Two-Level l1 Penalty

被引:1
|
作者
He, Fan [1 ,2 ]
He, Mingzhen [1 ,2 ]
Shi, Lei [3 ,4 ]
Huang, Xiaolin [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, MOE Key Lab Syst Control & Informat Proc, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai 200240, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[4] Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressive sensing; global search algorithm; kernel-based quantile regression; nonconvex optimization; two-level l(1) penalty; NONCONCAVE PENALIZED LIKELIHOOD; SOFT MARGIN CLASSIFIERS; VARIABLE SELECTION; SPARSE; REGULARIZATION; RECOGNITION; REGRESSION; RECOVERY;
D O I
10.1109/TNNLS.2022.3201052
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Imposing suitably designed nonconvex regularization is effective to enhance sparsity, but the corresponding global search algorithm has not been well established. In this article, we propose a global search algorithm for the nonconvex twolevel P t penalty based on its piecewise linear property and apply it to machine learning tasks. With the search capability, the optimization performance of the proposed algorithm could be improved, resulting in better sparsity and accuracy than most state-of-the-art global and local algorithms. Besides, we also provide an approximation analysis to demonstrate the effectiveness of our global search algorithm in sparse quantile regression.
引用
收藏
页码:3886 / 3899
页数:14
相关论文
共 50 条
  • [21] P-splines with an l1 penalty for repeated measures
    Segal, Brian D.
    Elliott, Michael R.
    Braun, Thomas
    Jiang, Hui
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3554 - 3600
  • [22] Image restoration using L1 norm penalty function
    Agarwal, Vivek
    Gribok, Andrei V.
    Abidi, Mongi A.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2007, 15 (08) : 785 - 809
  • [23] Bayesian tobit quantile regression with L1/2 penalty
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (06) : 1739 - 1750
  • [24] l1 penalty for ill-posed inverse problems
    Loubes, Jean-Michel
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (09) : 1399 - 1411
  • [25] TWO-LEVEL ITERATION PENALTY AND VARIATIONAL MULTISCALE METHOD FOR STEADY INCOMPRESSIBLE FLOWS
    Zhang, Yuqing
    Li, Yuan
    An, Rong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (03): : 607 - 627
  • [26] A nonconvex TVq - l1 regularization model and the ADMM based algorithm
    Fang, Zhuang
    Tang Liming
    Liang, Wu
    Liu Hanxin
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [27] A Weighted Two-Level Bregman Method with Dictionary Updating for Nonconvex MR Image Reconstruction
    Liu, Qiegen
    Peng, Xi
    Liu, Jianbo
    Yang, Dingcheng
    Liang, Dong
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2014, 2014
  • [28] In search of L1 retrotransposition intermediates.
    Kulpa, DA
    Athanikar, JN
    Moran, JV
    AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 69 (04) : 371 - 371
  • [29] Embedded heterogeneous feature selection for conjoint analysis: A SVM approach using L1 penalty
    Sebastián Maldonado
    Ricardo Montoya
    Julio López
    Applied Intelligence, 2017, 46 : 775 - 787
  • [30] Embedded heterogeneous feature selection for conjoint analysis: A SVM approach using L1 penalty
    Maldonado, Sebastian
    Montoya, Ricardo
    Lopez, Julio
    APPLIED INTELLIGENCE, 2017, 46 (04) : 775 - 787