Improving the Estimation of Rice Crop Damage from Flooding Events Using Open-Source Satellite Data and UAV Image Data

被引:2
|
作者
Ballaran Jr, Vicente [1 ,2 ,3 ]
Ohara, Miho [1 ,2 ,4 ]
Rasmy, Mohamed [1 ,2 ]
Homma, Koki [5 ]
Aida, Kentaro [1 ]
Hosonuma, Kohei [5 ]
机构
[1] Publ Works Res Inst PWRI, Int Ctr Water Hazard & Risk Management ICHARM, Ausp UNESCO, Tsukuba 3058516, Japan
[2] Natl Grad Inst Policy Studies GRIPS, Tokyo 1068677, Japan
[3] Univ Philippines Los Banos, Inst Agr & Biosyst Engn, Coll Engn & Agroind Technol, Laguna 4031, Philippines
[4] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
[5] Tohoku Univ, Grad Sch Agr Sci, Sendai 9808572, Japan
来源
AGRIENGINEERING | 2024年 / 6卷 / 01期
关键词
flood; remote sensing; agricultural monitoring; unmanned aerial vehicles; crop damage estimation; normalized difference vegetation index; SAR;
D O I
10.3390/agriengineering6010035
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Having an additional tool for swiftly determining the extent of flood damage to crops with confidence is beneficial. This study focuses on estimating rice crop damage caused by flooding in Candaba, Pampanga, using open-source satellite data. By analyzing the correlation between Normalized Difference Vegetation Index (NDVI) measurements from unmanned aerial vehicles (UAVs) and Sentinel-2 (S2) satellite data, a cost-effective and time-efficient alternative for agricultural monitoring is explored. This study comprises two stages: establishing a correlation between clear sky observations and NDVI measurements, and employing a combination of S2 NDVI and Synthetic Aperture Radar (SAR) NDVI to estimate crop damage. The integration of SAR and optical satellite data overcomes cloud cover challenges during typhoon events. The accuracy of standing crop estimation reached up to 99.2%, while crop damage estimation reached up to 99.7%. UAVs equipped with multispectral cameras prove effective for small-scale monitoring, while satellite imagery offers a valuable alternative for larger areas. The strong correlation between UAV and satellite-derived NDVI measurements highlights the significance of open-source satellite data in accurately estimating rice crop damage, providing a swift and reliable tool for assessing flood damage in agricultural monitoring.
引用
收藏
页码:574 / 596
页数:23
相关论文
共 50 条
  • [31] Osprey: Open-source processing, reconstruction & estimation of magnetic resonance spectroscopy data
    Oeltzschner, Georg
    Zollner, Helge J.
    Hui, Steve C. N.
    Mikkelsen, Mark
    Saleh, Muhammad G.
    Tapper, Sofie
    Edden, Richard A. E.
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 343
  • [32] CALCULATING PRODUCTIVITY ZONES OF CROP FIELDS USING OPEN SATELLITE DATA
    Narra, Nathaniel
    Linna, Petri
    Lipping, Tarmo
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6073 - 6076
  • [33] Integrating Data-Mining Support into a Brain-Image Database Using Open-Source Components
    Herskovits, E. H.
    Chen, R.
    ADVANCES IN MEDICAL SCIENCES, 2008, 53 (02): : 172 - 181
  • [34] Identifying Rice Crop Flooding Patterns Using Sentinel-1 SAR Data
    Keerthana N
    Shaik Salma
    B. M. Dodamani
    Journal of the Indian Society of Remote Sensing, 2022, 50 : 1569 - 1584
  • [35] Estimation of wildlife damage from federal crop insurance data
    McKee, Sophie C.
    Shwiff, Stephanie A.
    Anderson, Aaron M.
    PEST MANAGEMENT SCIENCE, 2021, 77 (01) : 406 - 416
  • [36] Identifying Rice Crop Flooding Patterns Using Sentinel-1 SAR Data
    Keerthana, N.
    Salma, Shaik
    Dodamani, B. M.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (08) : 1569 - 1584
  • [37] Big Data Gathering and Mining Pipelines for CRM using Open-source
    Li, Kang
    Deolalikar, Vinay
    Pradhan, Neeraj
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 2936 - 2938
  • [38] AFM/CLSM data visualization and comparison using an open-source toolkit
    Rajwa, B
    McNally, HA
    Varadharajan, P
    Sturgis, J
    Robinson, JP
    MICROSCOPY RESEARCH AND TECHNIQUE, 2004, 64 (02) : 176 - 184
  • [39] Improved ground sampling and crop yield estimation using satellite data
    Murthy, CS
    Thiruvengadachari, S
    Raji, PV
    Jonna, S
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (05) : 945 - 956
  • [40] Using real data for statistics education in an open-source learning environment
    Jonsdottir, Anna H.
    Lentin, Jamie
    Calian, Violeta
    Hafsteinsson, Eggert K.
    Stefansson, Gunnar
    TEACHING STATISTICS, 2021, 43 (01) : 5 - 12