Improving the Estimation of Rice Crop Damage from Flooding Events Using Open-Source Satellite Data and UAV Image Data

被引:2
|
作者
Ballaran Jr, Vicente [1 ,2 ,3 ]
Ohara, Miho [1 ,2 ,4 ]
Rasmy, Mohamed [1 ,2 ]
Homma, Koki [5 ]
Aida, Kentaro [1 ]
Hosonuma, Kohei [5 ]
机构
[1] Publ Works Res Inst PWRI, Int Ctr Water Hazard & Risk Management ICHARM, Ausp UNESCO, Tsukuba 3058516, Japan
[2] Natl Grad Inst Policy Studies GRIPS, Tokyo 1068677, Japan
[3] Univ Philippines Los Banos, Inst Agr & Biosyst Engn, Coll Engn & Agroind Technol, Laguna 4031, Philippines
[4] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
[5] Tohoku Univ, Grad Sch Agr Sci, Sendai 9808572, Japan
来源
AGRIENGINEERING | 2024年 / 6卷 / 01期
关键词
flood; remote sensing; agricultural monitoring; unmanned aerial vehicles; crop damage estimation; normalized difference vegetation index; SAR;
D O I
10.3390/agriengineering6010035
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Having an additional tool for swiftly determining the extent of flood damage to crops with confidence is beneficial. This study focuses on estimating rice crop damage caused by flooding in Candaba, Pampanga, using open-source satellite data. By analyzing the correlation between Normalized Difference Vegetation Index (NDVI) measurements from unmanned aerial vehicles (UAVs) and Sentinel-2 (S2) satellite data, a cost-effective and time-efficient alternative for agricultural monitoring is explored. This study comprises two stages: establishing a correlation between clear sky observations and NDVI measurements, and employing a combination of S2 NDVI and Synthetic Aperture Radar (SAR) NDVI to estimate crop damage. The integration of SAR and optical satellite data overcomes cloud cover challenges during typhoon events. The accuracy of standing crop estimation reached up to 99.2%, while crop damage estimation reached up to 99.7%. UAVs equipped with multispectral cameras prove effective for small-scale monitoring, while satellite imagery offers a valuable alternative for larger areas. The strong correlation between UAV and satellite-derived NDVI measurements highlights the significance of open-source satellite data in accurately estimating rice crop damage, providing a swift and reliable tool for assessing flood damage in agricultural monitoring.
引用
收藏
页码:574 / 596
页数:23
相关论文
共 50 条
  • [11] Estimating of rice crop yield in Thailand using satellite data
    Nontasiri, J.
    Dash, J.
    Roberts, G.
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XX, 2018, 10783
  • [12] Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning
    Maimaitijiang, Maitiniyazi
    Sagan, Vasit
    Sidike, Paheding
    Daloye, Ahmad M.
    Erkbol, Hasanjan
    Fritschi, Felix B.
    REMOTE SENSING, 2020, 12 (09)
  • [13] BioImageIT: Open-source framework for integration of image data management with analysis
    Sylvain Prigent
    Cesar Augusto Valades-Cruz
    Ludovic Leconte
    Léo Maury
    Jean Salamero
    Charles Kervrann
    Nature Methods, 2022, 19 : 1328 - 1330
  • [14] BioImageIT: Open-source framework for integration of image data management with analysis
    Prigent, Sylvain
    Valades-Cruz, Cesar Augusto
    Leconte, Ludovic
    Maury, Leo
    Salamero, Jean
    Kervrann, Charles
    NATURE METHODS, 2022, 19 (11) : 1328 - 1330
  • [15] Robust Open-Source Solution for Bridge Decrement Estimation for Data with Outliers
    Owerko, Tomasz
    Owerko, Piotr
    Tomaszkiewicz, Karolina
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2022, 8 (04): : 637 - 653
  • [16] Satellite Data Classification Using Open Source Support
    S. Biswal
    A. Ghosh
    R. Sharma
    P. K. Joshi
    Journal of the Indian Society of Remote Sensing, 2013, 41 : 523 - 530
  • [17] Satellite Data Classification Using Open Source Support
    Biswal, S.
    Ghosh, A.
    Sharma, R.
    Joshi, P. K.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2013, 41 (03) : 523 - 530
  • [18] A GIS OPEN-SOURCE APPLICATION TO ENHANCE THE IDENTIFICATION OF ARCHAEOLOGICAL CROP MARKS USING REMOTE SENSING DATA
    Duarte, Lia
    Sanchez, Jesus Garcia
    Fonte, Joao
    Teodoro, Ana Claudia
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS XII, 2021, 11863
  • [19] Crop Area Estimation from UAV Transect and MSR Image Data Using Spatial Sampling Method: a Simulation Experiment
    Pan, Yaozhong
    Zhang, Jinshui
    Shen, Kejian
    SPATIAL STATISTICS 2011: MAPPING GLOBAL CHANGE, 2011, 7 : 110 - 115
  • [20] RICE YIELD ESTIMATION THROUGH ASSIMILATING SATELLITE DATA INTO A CROP SIMUMLATION MODEL
    Son, N. T.
    Chen, C. F.
    Chen, C. R.
    Chang, L. Y.
    Chiang, S. H.
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 993 - 996