A global branch approach to normalized solutions for the Schrödinger equation

被引:13
|
作者
Jeanjean, Louis [1 ]
Zhang, Jianjun [2 ]
Zhong, Xuexiu [3 ]
机构
[1] Univ Franche Comte, CNRS, UMR 6623, LmB, F-25000 Besancon, France
[2] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[3] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Sch Math Sci, Guangzhou 510631, Peoples R China
关键词
Global branch; Schrodinger equation; Positive normalized solution; NONLINEAR SCHRODINGER-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; SCALAR FIELD-EQUATIONS; GROUND-STATES; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; UNIQUENESS; EXISTENCE; CALCULUS;
D O I
10.1016/j.matpur.2024.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, non-existence and multiplicity of prescribed mass positive solutions to a Schr & ouml;dinger equation of the form -Delta u+lambda u=g(u),u is an element of H-1(R-N),N >= 1. Our approach permits to handle in a unified way nonlinearities g(s) which are either mass subcritical, mass critical or mass supercritical. Among its main ingredients is the study of the asymptotic behaviors of the positive solutions as lambda -> 0+ or lambda ->+infinity and the existence of an unbounded continuum of solutions in (0,+infinity)xH1(R-N).
引用
收藏
页码:44 / 75
页数:32
相关论文
共 50 条
  • [41] On the Statistical Generator of Solutions to the Schrödinger Equation
    Plokhotnikov K.E.
    Mathematical Models and Computer Simulations, 2023, 15 (4) : 591 - 600
  • [42] Uniqueness for solutions of the Schrödinger equation on trees
    Aingeru Fernández-Bertolin
    Philippe Jaming
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 681 - 708
  • [43] New auxiliary equation approach to derive solutions of fractional resonant Schrödinger equation
    Eric Tala-Tebue
    Alper Korkmaz
    Hadi Rezazadeh
    Nauman Raza
    Analysis and Mathematical Physics, 2021, 11
  • [44] Existence and asymptotics of normalized solutions for the logarithmic Schr?dinger system
    Qian Zhang
    Wenming Zou
    Science China(Mathematics), 2024, 67 (09) : 2019 - 2048
  • [45] Normalized Solutions for Nonautonomous Schrödinger Equations on a Suitable Manifold
    Sitong Chen
    Xianhua Tang
    The Journal of Geometric Analysis, 2020, 30 : 1637 - 1660
  • [46] On Solutions to the Matrix Nonlinear Schrödinger Equation
    A. V. Domrin
    Computational Mathematics and Mathematical Physics, 2022, 62 : 920 - 932
  • [47] Localization of normalized solutions for saturable nonlinear Schr?dinger equations
    Xiaoming Wang
    Zhi-Qiang Wang
    Xu Zhang
    Science China(Mathematics), 2023, 66 (11) : 2495 - 2522
  • [48] Localization of normalized solutions for saturable nonlinear Schrödinger equations
    Xiaoming Wang
    Zhi-Qiang Wang
    Xu Zhang
    Science China Mathematics, 2023, 66 : 2495 - 2522
  • [49] Periodic solutions of a fractional Schrödinger equation
    Wang, Jian
    Du, Zhuoran
    APPLICABLE ANALYSIS, 2024, 103 (08) : 1540 - 1551
  • [50] Exact solutions of the nonstationary Schrödinger equation
    E. P. Velicheva
    A. A. Suz'ko
    Theoretical and Mathematical Physics, 1998, 115 : 687 - 693