A global branch approach to normalized solutions for the Schrödinger equation

被引:13
|
作者
Jeanjean, Louis [1 ]
Zhang, Jianjun [2 ]
Zhong, Xuexiu [3 ]
机构
[1] Univ Franche Comte, CNRS, UMR 6623, LmB, F-25000 Besancon, France
[2] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[3] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Sch Math Sci, Guangzhou 510631, Peoples R China
关键词
Global branch; Schrodinger equation; Positive normalized solution; NONLINEAR SCHRODINGER-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; SCALAR FIELD-EQUATIONS; GROUND-STATES; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; UNIQUENESS; EXISTENCE; CALCULUS;
D O I
10.1016/j.matpur.2024.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, non-existence and multiplicity of prescribed mass positive solutions to a Schr & ouml;dinger equation of the form -Delta u+lambda u=g(u),u is an element of H-1(R-N),N >= 1. Our approach permits to handle in a unified way nonlinearities g(s) which are either mass subcritical, mass critical or mass supercritical. Among its main ingredients is the study of the asymptotic behaviors of the positive solutions as lambda -> 0+ or lambda ->+infinity and the existence of an unbounded continuum of solutions in (0,+infinity)xH1(R-N).
引用
收藏
页码:44 / 75
页数:32
相关论文
共 50 条
  • [31] Solutions of the Schrödinger equation in a Hilbert space
    Alexander Boichuk
    Oleksander Pokutnyi
    Boundary Value Problems, 2014
  • [32] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,
  • [33] Global multiplicity of solutions to a defocusing quasilinear Schr?dinger equation with the singular term
    Siyu Chen
    Carlos Alberto Santos
    Minbo Yang
    Jiazheng Zhou
    ScienceChina(Mathematics), 2023, 66 (08) : 1789 - 1812
  • [34] Semiclassical Solutions of the Nonlinear Schrödinger Equation
    A. V. Shapovalov
    A. Yu. Trifonov
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 127 - 138
  • [35] Dispersive Estimates of Solutions to the Schrödinger Equation
    Georgi Vodev
    Annales Henri Poincaré, 2005, 6 : 1179 - 1196
  • [36] Multiple solutions of a sublinear Schrödinger equation
    Alexandru Kristály
    Nonlinear Differential Equations and Applications NoDEA, 2007, 14 : 291 - 301
  • [37] Steady solutions for the Schrödinger map equation
    Garcia, Claudia
    Vega, Luis
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (5-6) : 505 - 542
  • [38] Classical trajectories as solutions of the Schrödinger equation
    Mikhail L. Strekalov
    Journal of Mathematical Chemistry, 2016, 54 : 393 - 402
  • [39] Exact solutions of the nonstationary Schrödinger equation
    E. P. Velicheva
    A. A. Suz'ko
    Theoretical and Mathematical Physics, 1999, 121 : 1700 - 1700
  • [40] The concentration of solutions to a fractional Schrödinger equation
    Qihan He
    Wei Long
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67