A global branch approach to normalized solutions for the Schrödinger equation

被引:13
|
作者
Jeanjean, Louis [1 ]
Zhang, Jianjun [2 ]
Zhong, Xuexiu [3 ]
机构
[1] Univ Franche Comte, CNRS, UMR 6623, LmB, F-25000 Besancon, France
[2] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[3] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Sch Math Sci, Guangzhou 510631, Peoples R China
关键词
Global branch; Schrodinger equation; Positive normalized solution; NONLINEAR SCHRODINGER-EQUATIONS; CONCENTRATION-COMPACTNESS PRINCIPLE; SCALAR FIELD-EQUATIONS; GROUND-STATES; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; UNIQUENESS; EXISTENCE; CALCULUS;
D O I
10.1016/j.matpur.2024.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, non-existence and multiplicity of prescribed mass positive solutions to a Schr & ouml;dinger equation of the form -Delta u+lambda u=g(u),u is an element of H-1(R-N),N >= 1. Our approach permits to handle in a unified way nonlinearities g(s) which are either mass subcritical, mass critical or mass supercritical. Among its main ingredients is the study of the asymptotic behaviors of the positive solutions as lambda -> 0+ or lambda ->+infinity and the existence of an unbounded continuum of solutions in (0,+infinity)xH1(R-N).
引用
收藏
页码:44 / 75
页数:32
相关论文
共 50 条
  • [1] Normalized Solutions to the Fractional Schrödinger Equation with Potential
    Jiabin Zuo
    Chungen Liu
    Calogero Vetro
    Mediterranean Journal of Mathematics, 2023, 20
  • [2] Normalized Solutions to the Fractional Schrödinger Equation with Critical Growth
    Shen, Xinsi
    Lv, Ying
    Ou, Zengqi
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (03)
  • [3] Normalized Solutions to the Fractional Schrödinger Equation with Critical Growth
    Xinsi Shen
    Ying Lv
    Zengqi Ou
    Qualitative Theory of Dynamical Systems, 2024, 23
  • [4] Multiple normalized solutions for a Sobolev critical Schrödinger equation
    Louis Jeanjean
    Thanh Trung Le
    Mathematische Annalen, 2022, 384 : 101 - 134
  • [5] Multiplicity of Normalized Solutions for the Fractional Schrödinger Equation with Potentials
    Zhang, Xue
    Squassina, Marco
    Zhang, Jianjun
    MATHEMATICS, 2024, 12 (05)
  • [6] Infinitely Many Normalized Solutions for a Quasilinear Schrödinger Equation
    Yang, Xianyong
    Zhao, Fukun
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (02)
  • [7] Normalized solutions to planar Schrödinger equation with exponential critical nonlinearity
    Shuai Mo
    Lixia Wang
    Zeitschrift für angewandte Mathematik und Physik, 2024, 75
  • [8] Multiplicity of normalized solutions to biharmonic Schrödinger equation with mixed nonlinearities
    Liu, Jianlun
    Zhang, Ziheng
    Guan, Qingle
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [9] Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation
    Xiao Luo
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [10] Normalized solutions to planar Schrödinger equation with exponential critical nonlinearity
    Mo, Shuai
    Wang, Lixia
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (01):