Effects of EPCM particle properties on creep damage of the molten salt packed-bed thermal energy storage system

被引:5
|
作者
Guo, Yi-Fan [1 ]
Du, Bao-Cun [1 ]
Xu, Chao [2 ]
Lei, Yong-Gang [1 ]
机构
[1] Taiyuan Univ Technol, Coll Civil Engn, Taiyuan 030024, Shanxi, Peoples R China
[2] North China Elect Power Univ, Sch Energy Power & Mech Engn, Key Lab Condit Monitoring & Control Power Plant Eq, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Molten salt; Packed-bed; Creep damage; Particle diameter; Melting temperature; PERFORMANCE ANALYSIS; NUMERICAL-ANALYSIS; STEAM-GENERATOR; SOLAR RECEIVER; HEAT-TRANSFER; PCM; DESIGN; COST;
D O I
10.1016/j.est.2023.107808
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
One of the concerned aspects in the design of molten salt packed-bed thermal energy storage (TES) tank with encapsulated phase change materials (EPCMs) is to evaluate the creep damage because of molten salt tanks have to withstand elevated temperature and stress level in charging and discharging processes. This paper aims at estimating the creep damage and investigating the effects of EPCM particle properties on creep damage per-formance of EPCM-TES tank. First, a commercial scale molten salt EPCM-TES tank applied in 50MWe tower plant is designed. Second, a method to evaluate the creep damage of packed-bed tank in service life is developed based on the integration model coupling FVM and FEM. Then, the effects of particle diameter and melting temperature of EPCMs on creep damage are discussed. Finally, a novel diameter-changed and melting temperature-changed two-layered EPCMs packed-bed structure with lower creep damage is proposed. The results are concluded as follows. (1) The creep damage of bottom wallboard is more significant than that of other wallboards in operation. (2) The EPCMs with smaller particle diameter or higher melting temperature is helpful to reduce the creep damage of tank. When particle diameter decreases from 42 mm to 20 mm or melting point rise from 365 degrees C to 395 degrees C, the creep damage of bottom wallboard can be reduced by 4.8 times and 58 %, respectively. (3) The creep damage of novel two-layered EPCM-TES configuration with lower creep damage time and stress is weaker than single-layered form. Compared with single-layered form filling with higher particle diameter and melting tem-perature of EPCMs, the creep damage of bottom wallboard in two-layered structure can be reduced by 53 %. This work can provide insights on the optimization design of the EPCM packed-bed TES configuration for lower creep damage in service life.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material
    Li, Ming-Jia
    Jin, Bo
    Ma, Zhao
    Yuan, Fan
    APPLIED ENERGY, 2018, 221 : 1 - 15
  • [32] Experimental and Numerical Investigation of a Packed-bed Thermal Energy Storage Device
    Yang, Bei
    Wang, Yan
    Bai, Fengwu
    Wang, Zhifeng
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2016), 2017, 1850
  • [33] TRANSIENT-RESPONSE OF A PACKED-BED FOR THERMAL-ENERGY STORAGE
    BEASLEY, DE
    CLARK, JA
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1984, 27 (09) : 1659 - 1669
  • [34] Experimental investigation of a packed-bed thermal energy storage system fitted with perforated cylindrical elements
    Anshul Kunwar
    Manoj Kumar
    Ashutosh Gupta
    Chidanand K. Mangrulkar
    Sunil Chamoli
    Heat and Mass Transfer, 2019, 55 : 2723 - 2737
  • [35] Experimental investigation of a packed-bed thermal energy storage system fitted with perforated cylindrical elements
    Kunwar, Anshul
    Kumar, Manoj
    Gupta, Ashutosh
    Mangrulkar, Chidanand K.
    Chamoli, Sunil
    HEAT AND MASS TRANSFER, 2019, 55 (10) : 2723 - 2737
  • [36] A comparison between CFD simulation and experimental investigation of a packed-bed thermal energy storage system
    Cascetta, Mario
    Cau, Giorgio
    Puddu, Pierpaolo
    Serra, Fabio
    APPLIED THERMAL ENGINEERING, 2016, 98 : 1263 - 1272
  • [37] DESIGN OF A PACKED-BED THERMAL STORAGE UNIT FOR A SOLAR-SYSTEM
    KULAKOWSKI, BT
    SCHMIDT, FW
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 1982, 104 (03): : 223 - 228
  • [38] Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage
    White, Alexander
    McTigue, Joshua
    Markides, Christos
    APPLIED ENERGY, 2014, 130 : 648 - 657
  • [39] Comparative Study of Different Gases for Packed-Bed Thermal Energy Storage Systems
    Rabi, Ayah Marwan
    Radulovic, Jovana
    Buick, James M.
    ENERGIES, 2025, 18 (05)
  • [40] Performance analysis on combined energy supply system based on Carnot battery with packed-bed thermal energy storage
    Wang, H. N.
    Xue, X. J.
    Zhao, C. Y.
    RENEWABLE ENERGY, 2024, 228