Performance analysis on combined energy supply system based on Carnot battery with packed-bed thermal energy storage

被引:4
|
作者
Wang, H. N. [1 ]
Xue, X. J. [1 ]
Zhao, C. Y. [1 ]
机构
[1] Shanghai Jiao Tong Univ, China UK Low Carbon Coll, Shanghai 201306, Peoples R China
基金
国家自然科学基金重大项目;
关键词
Pumped-thermal electricity storage; Hydrogen production; Multi-energy supply; Thermodynamic analysis; ELECTRICITY; HEAT; CYCLE; TECHNOLOGIES; FLOW;
D O I
10.1016/j.renene.2024.120702
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Pumped-thermal electricity storage (PTES) is a promising energy storage technology with high-efficiency, energy density, and versatility of installation conditions. In this study, a 20 kW/5 h phase change packed-bed thermal energy storage experimental system is established and employed to validate the accuracy of thermal energy storage (TES) component within the broader PTES system. Moreover, a novel combined system based on latent TES is proposed, incorporating Joule-Brayton and organic Rankine cycle-based subsystems for supplying cold, heat, electricity, and hydrogen. Operational strategies are also explored to optimize the multifunctional capabilities of the system. The thermal energy density of the system, when phase change materials (PCMs) are used instead of sensible heat storage materials, can be improved from 167.85 kWh/m 3 to 272.58 kWh/m 3 . Proton exchange membrane electrolyzer cycle (PEMEC) is coupled into the Carnot battery system, and a comprehensive analysis of the system ' s performance is conducted. With the charging time of 5 h, the energy performance of the multi-generation system ( EPMG ) can be reached up to 143 % and 146 % in combined cooling, heating, and power (CCHP) and multi-generation energy system (MGES) modes, respectively. The MGES mode is made 3.44 % more exergy efficient than the CCHP mode as a result of the ingenious coupling of the hydrogen production process with the power generation process and heating/cooling processes. The system in one charging/discharging process has the capability to generate 240.86 kg of hydrogen, 34.82 MWh of heat, 12.97 MWh of cold, and 40.90 MWh of electricity.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Experimental studies of packed-bed Thermal Energy Storage system performance
    Ochmann, Jakub
    Bartela, Lukasz
    Rusin, Krzysztof
    Jurczyk, Michal
    Stanek, Bartosz
    Rulik, Sebastian
    Waniczek, Sebastian
    JOURNAL OF POWER TECHNOLOGIES, 2022, 102 (01): : 37 - 44
  • [2] Numerical analysis of thermal energy storage system using packed-bed
    Jaunet, Paolo
    Kunwer, Ram
    Raghav, Geetanjali
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) : 2926 - 2937
  • [3] Control strategy effect on storage performance for packed-bed thermal energy storage
    Wang, Yan
    Wang, Zhifeng
    Yuan, Guofeng
    SOLAR ENERGY, 2023, 253 : 73 - 84
  • [4] Packed-bed Thermal Energy Storage Analysis: Quartzite and Palm-Oil Performance
    Erregueragui, Zineb
    Boutammachte, Nourredine
    Bouatem, Abdelfettah
    Merroun, Ossama
    Zemmouri, E. L. Moukhtar
    10TH INTERNATIONAL RENEWABLE ENERGY STORAGE CONFERENCE, IRES 2016, 2016, 99 : 370 - 379
  • [5] A COMPARATIVE COST AND PERFORMANCE ANALYSIS OF STRUCTURED AND PACKED-BED THERMOCLINE THERMAL ENERGY STORAGE SYSTEMS
    Strasser, Matthew N.
    Selvam, R. Panneer
    PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE - 2013, VOL 1, 2014,
  • [6] Wall impact on efficiency of packed-bed thermocline thermal energy storage system
    Xie, Baoshan
    Baudin, Nicolas
    Soto, Jerome
    Fan, Yilin
    Luo, Lingai
    ENERGY, 2022, 247
  • [7] OPTIMIZATION OF A PACKED-BED THERMAL-ENERGY STORAGE UNIT
    TORAB, H
    BEASLEY, DE
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 1987, 109 (03): : 170 - 175
  • [8] Design of a 100 MWhth packed-bed thermal energy storage
    Zanganeh, G.
    Pedretti, A.
    Zavattoni, S. A.
    Barbato, M. C.
    Haselbacher, A.
    Steinfeld, A.
    PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE, 2014, 49 : 1071 - 1077
  • [9] Experimental and computational analysis of packed-bed thermal energy storage tank designed for adiabatic compressed air energy storage system
    Ochmann, Jakub
    Rusin, Krzysztof
    Rulik, Sebastian
    Waniczek, Sebastian
    Bartela, Lukasz
    APPLIED THERMAL ENGINEERING, 2022, 213
  • [10] Experimental and computational analysis of packed-bed thermal energy storage tank designed for adiabatic compressed air energy storage system
    Ochmann, Jakub
    Rusin, Krzysztof
    Rulik, Sebastian
    Waniczek, Sebastian
    Bartela, Lukasz
    Applied Thermal Engineering, 2022, 213