Semantic Labeling of High-Resolution Images Using EfficientUNets and Transformers

被引:13
|
作者
Almarzouqi, Hasan [1 ]
Saoud, Lyes Saad [2 ]
机构
[1] Khalifa Univ, Elect Engn & Comp Sci Dept, Abu Dhabi 127788, U Arab Emirates
[2] Khalifa Univ, Mech Engn Dept, Abu Dhabi 127788, U Arab Emirates
关键词
Transformers; Feature extraction; Remote sensing; Semantics; Semantic segmentation; Image resolution; Data models; Convolutional neural networks (CNNs); EfficientNet; fusion networks; semantic segmentation; transformers; SEGMENTATION; NETWORK; CLASSIFICATION; FOREST;
D O I
10.1109/TGRS.2023.3268159
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Semantic segmentation necessitates approaches that learn high-level characteristics while dealing with enormous quantities of data. Convolutional neural networks (CNNs) can learn unique and adaptive features to achieve this aim. However, due to the large size and high spatial resolution of remote sensing images, these networks cannot efficiently analyze an entire scene. Recently, deep transformers have proven their capability to record global interactions between different objects in the image. In this article, we propose a new segmentation model that combines CNNs with transformers and show that this mixture of local and global feature extraction techniques provides significant advantages in remote sensing segmentation. In addition, the proposed model includes two fusion layers that are designed to efficiently represent multimodal inputs and outputs of the network. The input fusion layer extracts feature maps summarizing the relationship between image content and elevation maps [digital surface model (DSM)]. The output fusion layer uses a novel multitask segmentation strategy where class labels are identified using class-specific feature extraction layers and loss functions. Finally, a fast-marching method (FMM) is used to convert unidentified class labels into their closest known neighbors. Our results demonstrate that the proposed method improves segmentation accuracy compared with state-of-the-art techniques.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Edge Guidance Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Ni, Yue
    Liu, Jiahang
    Cui, Jian
    Yang, Yuze
    Wang, Xiaozhen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 9809 - 9822
  • [32] Block-based semantic classification of high-resolution multispectral aerial images
    Aleksej Avramović
    Vladimir Risojević
    Signal, Image and Video Processing, 2016, 10 : 75 - 84
  • [33] A Deformable Attention Network for High-Resolution Remote Sensing Images Semantic Segmentation
    Zuo, Renxiang
    Zhang, Guangyun
    Zhang, Rongting
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] Semantic segmentation of water bodies in very high-resolution satellite and aerial images
    Wieland, Marc
    Martinis, Sandro
    Kiefl, Ralph
    Gstaiger, Veronika
    REMOTE SENSING OF ENVIRONMENT, 2023, 287
  • [35] Semantic Annotation of High-Resolution Satellite Images via Weakly Supervised Learning
    Yao, Xiwen
    Han, Junwei
    Cheng, Gong
    Qian, Xueming
    Guo, Lei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3660 - 3671
  • [36] Multiscale Cascaded Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhang, Xiaolu
    Wang, Zhaoshun
    Wei, Anlei
    CANADIAN JOURNAL OF REMOTE SENSING, 2023, 49 (01)
  • [37] UNeXt: An Efficient Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Chang, Zhanyuan
    Xu, Mingyu
    Wei, Yuwen
    Lian, Jie
    Zhang, Chongming
    Li, Chuanjiang
    SENSORS, 2024, 24 (20)
  • [38] Land Cover Semantic Annotation Derived from High-Resolution SAR Images
    Dumitru, Corneliu Octavian
    Schwarz, Gottfried
    Datcu, Mihai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (06) : 2215 - 2232
  • [39] Dual decoupling semantic segmentation model for high-resolution remote sensing images
    Liu S.
    Li X.
    Yu M.
    Xing G.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (04): : 638 - 647
  • [40] Dynamic High-Resolution Network for Semantic Segmentation in Remote-Sensing Images
    Guo, Shichen
    Yang, Qi
    Xiang, Shiming
    Wang, Pengfei
    Wang, Xuezhi
    REMOTE SENSING, 2023, 15 (09)