Semantic Labeling of High-Resolution Images Using EfficientUNets and Transformers

被引:13
|
作者
Almarzouqi, Hasan [1 ]
Saoud, Lyes Saad [2 ]
机构
[1] Khalifa Univ, Elect Engn & Comp Sci Dept, Abu Dhabi 127788, U Arab Emirates
[2] Khalifa Univ, Mech Engn Dept, Abu Dhabi 127788, U Arab Emirates
关键词
Transformers; Feature extraction; Remote sensing; Semantics; Semantic segmentation; Image resolution; Data models; Convolutional neural networks (CNNs); EfficientNet; fusion networks; semantic segmentation; transformers; SEGMENTATION; NETWORK; CLASSIFICATION; FOREST;
D O I
10.1109/TGRS.2023.3268159
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Semantic segmentation necessitates approaches that learn high-level characteristics while dealing with enormous quantities of data. Convolutional neural networks (CNNs) can learn unique and adaptive features to achieve this aim. However, due to the large size and high spatial resolution of remote sensing images, these networks cannot efficiently analyze an entire scene. Recently, deep transformers have proven their capability to record global interactions between different objects in the image. In this article, we propose a new segmentation model that combines CNNs with transformers and show that this mixture of local and global feature extraction techniques provides significant advantages in remote sensing segmentation. In addition, the proposed model includes two fusion layers that are designed to efficiently represent multimodal inputs and outputs of the network. The input fusion layer extracts feature maps summarizing the relationship between image content and elevation maps [digital surface model (DSM)]. The output fusion layer uses a novel multitask segmentation strategy where class labels are identified using class-specific feature extraction layers and loss functions. Finally, a fast-marching method (FMM) is used to convert unidentified class labels into their closest known neighbors. Our results demonstrate that the proposed method improves segmentation accuracy compared with state-of-the-art techniques.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Object discovery in high-resolution remote sensing images: a semantic perspective
    Dihua Guo
    Hui Xiong
    Vijayalakshmi Atluri
    Nabil R. Adam
    Knowledge and Information Systems, 2009, 19 : 211 - 233
  • [22] ICNet for Real-Time Semantic Segmentation on High-Resolution Images
    Zhao, Hengshuang
    Qi, Xiaojuan
    Shen, Xiaoyong
    Shi, Jianping
    Jia, Jiaya
    COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 : 418 - 434
  • [23] Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images
    Wang, Hongzhen
    Wang, Ying
    Zhang, Qian
    Xiang, Shiming
    Pan, Chunhong
    REMOTE SENSING, 2017, 9 (05)
  • [24] Patch Proposal Network for Fast Semantic Segmentation of High-Resolution Images
    Wu, Tong
    Lei, Zhenzhen
    Lin, Bingqian
    Li, Cuihua
    Qu, Yanyun
    Xie, Yuan
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12402 - 12409
  • [25] Semantic change detection using a hierarchical semantic graph interaction network from high-resolution remote sensing images
    Long, Jiang
    Li, Mengmeng
    Wang, Xiaoqin
    Stein, Alfred
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 211 : 318 - 335
  • [26] EAD-Net: Efficiently Asymmetric Network for Semantic Labeling of High-Resolution Remote Sensing Images with Dynamic Routing Mechanism
    Hu, Qiongqiong
    Wang, Feiting
    Li, Ying
    REMOTE SENSING, 2024, 16 (09)
  • [27] Fast Image Labeling for Creating High-Resolution Panoramic Images on Mobile Devices
    Xiong, Yingen
    Pulli, Kari
    2009 11TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2009), 2009, : 369 - 376
  • [28] Fast image labeling for creating high-resolution panoramic images on mobile devices
    Nokia Research Center, Palo Alto, CA 94304, United States
    ISM - IEEE Int. Symp. Multimedia, 1600, (369-376):
  • [29] Semantic segmentation of high-resolution remote sensing images using fully convolutional network with adaptive threshold
    Wu, Zhihuan
    Gao, Yongming
    Li, Lei
    Xue, Junshi
    Li, Yuntao
    CONNECTION SCIENCE, 2019, 31 (02) : 169 - 184
  • [30] IMPROVING SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES USING WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK
    Hosseinpour, H. R.
    Samadzadegan, F.
    Javan, F. Dadrass
    Motayyeb, S.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/ 4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 48-4, 2023, : 45 - 51