Exploring parameter spaces with artificial intelligence and machine learning black-box optimization algorithms

被引:9
|
作者
de Souza, Fernando Abreu [1 ]
Romao, Miguel Crispim [1 ]
Castro, Nuno Filipe [1 ]
Nikjoo, Mehraveh [1 ]
Porod, Werner [2 ]
机构
[1] Univ Minho, Dept Fis, LIP Lab Instrumentacao & Fis Expt Particulas, Escola Ciencias, P-4701057 Braga, Portugal
[2] Uni Wurzburg, Inst Theoret Phys & Astrophys, Campus Hubland Nord,Emil Hilb Weg 22, D-97074 Wurzburg, Germany
关键词
SPHENO; MSSM;
D O I
10.1103/PhysRevD.107.035004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Constraining beyond the Standard Model theories usually involves scanning highly multidimensional parameter spaces and checking observable predictions against experimental bounds and theoretical constraints. Such a task is often timely and computationally expensive, especially when the model is severely constrained and thus leading to very low random sampling efficiency. In this work we tackled this challenge using artificial intelligence and machine learning search algorithms used for black-box optimization problems. Using the constrained minimal supersymmetric standard model and the phenom-enological minimal supersymmetric standard model parameter spaces, we consider both the Higgs mass and the dark matter relic density constraints to study their sampling efficiency and parameter space coverage. We find our methodology to produce orders of magnitude improvement of sampling efficiency while reasonably covering the parameter space.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Efficient Parameter Estimation for Information Retrieval Using Black-Box Optimization
    Costa, Alberto
    Di Buccio, Emanuele
    Melucci, Massimo
    Nannicini, Giacomo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (07) : 1240 - 1253
  • [42] A brief history of artificial intelligence embryo selection: from black-box to glass-box
    Lee, Tammy
    Natalwala, Jay
    Chapple, Vincent
    Liu, Yanhe
    HUMAN REPRODUCTION, 2024, 39 (02) : 285 - 292
  • [43] Parameter estimation of DC black-Box arc models using genetic algorithms
    Pessoa, Felipe P.
    Acosta, Jhair S.
    Tavares, Maria C.
    ELECTRIC POWER SYSTEMS RESEARCH, 2021, 198
  • [44] Bayesian Active Meta-Learning for Black-Box Optimization
    Nikoloska, Ivana
    Simeone, Osvaldo
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [45] Information-theoretic generalization bounds for black-box learning algorithms
    Harutyunyan, Hrayr
    Raginsky, Maxim
    Ver Steeg, Greg
    Galstyan, Aram
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [46] Empirical Assessment of Human Learning Principles Inspired PSO Algorithms on Continuous Black-Box Optimization Testbed
    Tanweer, M. R.
    Al-Dujaili, Abdullah
    Suresh, S.
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING (SEMCCO 2015), 2016, 9873 : 17 - 28
  • [47] Continuous black-box optimization with an Ising machine and random subspace coding
    Izawa, Syun
    Kitai, Koki
    Tanaka, Shu
    Tamura, Ryo
    Tsuda, Koji
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [48] Comparison of Sensitivity-Guided and Black-Box Machine Tool Parameter Identification
    Ellinger, Johannes
    Piendl, Daniel
    Zaeh, Michael F.
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2023, 7 (04):
  • [49] Explaining Artificial Intelligence with CareAnalyzing the Explainability of Black Box Multiclass Machine Learning Models in Forensics
    Gero Szepannek
    Karsten Lübke
    KI - Künstliche Intelligenz, 2022, 36 : 125 - 134
  • [50] AMEBA: An Adaptive Approach to the Black-Box Evasion of Machine Learning Models
    Calzavara, Stefano
    Cazzaro, Lorenzo
    Lucchese, Claudio
    ASIA CCS'21: PROCEEDINGS OF THE 2021 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2021, : 292 - 306