Exploring parameter spaces with artificial intelligence and machine learning black-box optimization algorithms

被引:9
|
作者
de Souza, Fernando Abreu [1 ]
Romao, Miguel Crispim [1 ]
Castro, Nuno Filipe [1 ]
Nikjoo, Mehraveh [1 ]
Porod, Werner [2 ]
机构
[1] Univ Minho, Dept Fis, LIP Lab Instrumentacao & Fis Expt Particulas, Escola Ciencias, P-4701057 Braga, Portugal
[2] Uni Wurzburg, Inst Theoret Phys & Astrophys, Campus Hubland Nord,Emil Hilb Weg 22, D-97074 Wurzburg, Germany
关键词
SPHENO; MSSM;
D O I
10.1103/PhysRevD.107.035004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Constraining beyond the Standard Model theories usually involves scanning highly multidimensional parameter spaces and checking observable predictions against experimental bounds and theoretical constraints. Such a task is often timely and computationally expensive, especially when the model is severely constrained and thus leading to very low random sampling efficiency. In this work we tackled this challenge using artificial intelligence and machine learning search algorithms used for black-box optimization problems. Using the constrained minimal supersymmetric standard model and the phenom-enological minimal supersymmetric standard model parameter spaces, we consider both the Higgs mass and the dark matter relic density constraints to study their sampling efficiency and parameter space coverage. We find our methodology to produce orders of magnitude improvement of sampling efficiency while reasonably covering the parameter space.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Policy Learning with an Effcient Black-Box Optimization Algorithm
    Hwangbo, Jemin
    Gehring, Christian
    Sommer, Hannes
    Siegwart, Roland
    Buchli, Jonas
    INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2015, 12 (03)
  • [22] ROCK☆ - Efficient Black-box Optimization for Policy Learning
    Hwangbo, Jemin
    Gehring, Christian
    Sommer, Hannes
    Siegwart, Roland
    Buchli, Jonas
    2014 14TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2014, : 535 - 540
  • [23] Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)
    Adadi, Amina
    Berrada, Mohammed
    IEEE ACCESS, 2018, 6 : 52138 - 52160
  • [24] Rethinking explainability: toward a postphenomenology of black-box artificial intelligence in medicine
    Annie B. Friedrich
    Jordan Mason
    Jay R. Malone
    Ethics and Information Technology, 2022, 24
  • [25] Interpretable, not black-box, artificial intelligence should be used for embryo selection
    Afnan, Michael Anis Mihdi
    Liu, Yanhe
    Conitzer, Vincent
    Rudin, Cynthia
    Mishra, Abhishek
    Savulescu, Julian
    Afnan, Masoud
    HUMAN REPRODUCTION OPEN, 2021, 2021 (04)
  • [26] Rethinking explainability: toward a postphenomenology of black-box artificial intelligence in medicine
    Friedrich, Annie B.
    Mason, Jordan
    Malone, Jay R.
    ETHICS AND INFORMATION TECHNOLOGY, 2022, 24 (01)
  • [27] Artificial Intelligence and Black-Box Medical Decisions: Accuracy versus Explainability
    London, Alex John
    HASTINGS CENTER REPORT, 2019, 49 (01) : 15 - 21
  • [28] Versatile Black-Box Optimization
    Liu, Jialin
    Moreau, Antoine
    Preuss, Mike
    Rapin, Jeremy
    Roziere, Baptiste
    Teytaud, Fabien
    Teytaud, Olivier
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 620 - 628
  • [29] Black-box Optimization with a Politician
    Bubeck, Sebastien
    Lee, Yin-Tat
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [30] Identifying the Machine Learning Family from Black-Box Models
    Fabra-Boluda, Raul
    Ferri, Cesar
    Hernandez-Orallo, Jose
    Martinez-Plumed, Fernando
    Jose Ramirez-Quintana, Maria
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2018, 2018, 11160 : 55 - 65