Exploring parameter spaces with artificial intelligence and machine learning black-box optimization algorithms

被引:9
|
作者
de Souza, Fernando Abreu [1 ]
Romao, Miguel Crispim [1 ]
Castro, Nuno Filipe [1 ]
Nikjoo, Mehraveh [1 ]
Porod, Werner [2 ]
机构
[1] Univ Minho, Dept Fis, LIP Lab Instrumentacao & Fis Expt Particulas, Escola Ciencias, P-4701057 Braga, Portugal
[2] Uni Wurzburg, Inst Theoret Phys & Astrophys, Campus Hubland Nord,Emil Hilb Weg 22, D-97074 Wurzburg, Germany
关键词
SPHENO; MSSM;
D O I
10.1103/PhysRevD.107.035004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Constraining beyond the Standard Model theories usually involves scanning highly multidimensional parameter spaces and checking observable predictions against experimental bounds and theoretical constraints. Such a task is often timely and computationally expensive, especially when the model is severely constrained and thus leading to very low random sampling efficiency. In this work we tackled this challenge using artificial intelligence and machine learning search algorithms used for black-box optimization problems. Using the constrained minimal supersymmetric standard model and the phenom-enological minimal supersymmetric standard model parameter spaces, we consider both the Higgs mass and the dark matter relic density constraints to study their sampling efficiency and parameter space coverage. We find our methodology to produce orders of magnitude improvement of sampling efficiency while reasonably covering the parameter space.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Users' trust in black-box machine learning algorithms
    Nakashima, Heitor Hoffman
    Mantovani, Daielly
    Machado Junior, Celso
    REGE-REVISTA DE GESTAO, 2024, 31 (02): : 237 - 250
  • [2] A data-driven robust optimization algorithm for black-box cases: An application to hyper-parameter optimization of machine learning algorithms
    Seifi, Farshad
    Azizi, Mohammad Javad
    Niaki, Seyed Taghi Akhavan
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 160
  • [3] MACHINE-LEARNING IN OPTIMIZATION OF EXPENSIVE BLACK-BOX FUNCTIONS
    Tenne, Yoel
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2017, 27 (01) : 105 - 118
  • [4] Black-box artificial intelligence: an epistemological and critical analysis
    Carabantes, Manuel
    AI & SOCIETY, 2020, 35 (02) : 309 - 317
  • [5] Black-box artificial intelligence: an epistemological and critical analysis
    Manuel Carabantes
    AI & SOCIETY, 2020, 35 : 309 - 317
  • [6] Exploring Bias and Fairness in Artificial Intelligence and Machine Learning Algorithms
    Khakurel, Utsab
    Abdelmoumin, Ghada
    Bajracharya, Aakriti
    Rawat, Danda B.
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS IV, 2022, 12113
  • [7] Using Machine Learning for Black-Box Autoscaling
    Wajahat, Muhammad
    Gandhi, Anshul
    Karve, Alexei
    Kochut, Andrzej
    2016 SEVENTH INTERNATIONAL GREEN AND SUSTAINABLE COMPUTING CONFERENCE (IGSC), 2016,
  • [8] Removing the Black-Box from Machine Learning
    Fernando Kuri-Morales, Angel
    PATTERN RECOGNITION, MCPR 2023, 2023, 13902 : 36 - 46
  • [9] Black-Box Optimization by Fourier Analysis and Swarm Intelligence
    Lim, Eldin Wee Chuan
    New, Jin Rou
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2012, 45 (06) : 417 - 428
  • [10] Meta-Learning for Black-Box Optimization
    Vishnu, T. V.
    Malhotra, Pankaj
    Narwariya, Jyoti
    Vig, Lovekesh
    Shroff, Gautam
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 366 - 381