Strong convergence of the vorticity and conservation of the energy for the α-Euler equations

被引:1
|
作者
Abbate, Stefano [1 ]
Crippa, Gianluca [2 ]
Spirito, Stefano [3 ]
机构
[1] Gran Sasso Sci Inst GSSI, Viale Francesco Crispi 7, I-67100 Laquila, Italy
[2] Univ Basel, Dept Math & Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[3] Univ Aquila, DISIM Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
关键词
2D Euler equations; 2D alpha-Euler equations; Lagrangian solutions; conservation of the energy; 2D EULER; INVISCID LIMIT;
D O I
10.1088/1361-6544/ad1cdf
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the convergence of solutions of the alpha-Euler equations to solutions of the Euler equations on the two-dimensional torus. In particular, given an initial vorticity omega(0 )in L-x(p) for p is an element of (1,infinity), we prove strong convergence in L-t infinity L-x(p) of the vorticities q alpha , solutions of the alpha-Euler equations, towards a Lagrangian and energy-conserving solution of the Euler equations. Furthermore, if we consider solutions with bounded initial vorticity, we prove a quantitative rate of convergence of q(alpha) to omega in L-p , for p is an element of (1,infinity).
引用
收藏
页数:25
相关论文
共 50 条