Strong convergence of the vorticity and conservation of the energy for the α-Euler equations

被引:1
|
作者
Abbate, Stefano [1 ]
Crippa, Gianluca [2 ]
Spirito, Stefano [3 ]
机构
[1] Gran Sasso Sci Inst GSSI, Viale Francesco Crispi 7, I-67100 Laquila, Italy
[2] Univ Basel, Dept Math & Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[3] Univ Aquila, DISIM Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
关键词
2D Euler equations; 2D alpha-Euler equations; Lagrangian solutions; conservation of the energy; 2D EULER; INVISCID LIMIT;
D O I
10.1088/1361-6544/ad1cdf
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the convergence of solutions of the alpha-Euler equations to solutions of the Euler equations on the two-dimensional torus. In particular, given an initial vorticity omega(0 )in L-x(p) for p is an element of (1,infinity), we prove strong convergence in L-t infinity L-x(p) of the vorticities q alpha , solutions of the alpha-Euler equations, towards a Lagrangian and energy-conserving solution of the Euler equations. Furthermore, if we consider solutions with bounded initial vorticity, we prove a quantitative rate of convergence of q(alpha) to omega in L-p , for p is an element of (1,infinity).
引用
收藏
页数:25
相关论文
共 50 条
  • [11] Regularity and Energy Conservation for the Compressible Euler Equations
    Feireisl, Eduard
    Gwiazda, Piotr
    Swierczewska-Gwiazda, Agnieszka
    Wiedemann, Emil
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (03) : 1375 - 1395
  • [12] Convergence of meshless methods for conservation laws applications to Euler equations
    Ben Moussa, B
    Lanson, N
    Vila, JP
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL 1, 1999, 129 : 31 - 40
  • [13] ENERGY CONSERVATION FOR 2D EULER WITH VORTICITY IN L(logL)α
    Ciampa, Gennaro
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (03) : 855 - 875
  • [14] The growth of vorticity moments in the Euler equations
    Kerr, Robert M.
    IUTAM SYMPOSIUM ON TOPOLOGICAL FLUID DYNAMICS: THEORY AND APPLICATIONS, 2013, 7 : 49 - 58
  • [15] Onsager's energy conservation for inhomogeneous Euler equations
    Chen, Robin Ming
    Yu, Cheng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 131 : 1 - 16
  • [16] Energy conservation for inhomogeneous incompressible and compressible Euler equations
    Nguyen, Quoc-Hung
    Nguyen, Phuoc-Tai
    Tang, Bao Quoc
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) : 7171 - 7210
  • [17] On energy conservation for the hydrostatic Euler equations: an Onsager conjecture
    Daniel W. Boutros
    Simon Markfelder
    Edriss S. Titi
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [18] A study of strong convergence of differential equations based on Euler's algorithm
    Ji, Tianfu
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [19] On energy conservation for the hydrostatic Euler equations: an Onsager conjecture
    Boutros, Daniel W.
    Markfelder, Simon
    Titi, Edriss S.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (08)
  • [20] Energy conservation and Onsager's conjecture for the Euler equations
    Cheskidov, A.
    Constantin, P.
    Friedlander, S.
    Shvydkoy, R.
    NONLINEARITY, 2008, 21 (06) : 1233 - 1252