Strong convergence of the vorticity and conservation of the energy for the α-Euler equations

被引:1
|
作者
Abbate, Stefano [1 ]
Crippa, Gianluca [2 ]
Spirito, Stefano [3 ]
机构
[1] Gran Sasso Sci Inst GSSI, Viale Francesco Crispi 7, I-67100 Laquila, Italy
[2] Univ Basel, Dept Math & Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[3] Univ Aquila, DISIM Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67100 Laquila, Italy
关键词
2D Euler equations; 2D alpha-Euler equations; Lagrangian solutions; conservation of the energy; 2D EULER; INVISCID LIMIT;
D O I
10.1088/1361-6544/ad1cdf
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the convergence of solutions of the alpha-Euler equations to solutions of the Euler equations on the two-dimensional torus. In particular, given an initial vorticity omega(0 )in L-x(p) for p is an element of (1,infinity), we prove strong convergence in L-t infinity L-x(p) of the vorticities q alpha , solutions of the alpha-Euler equations, towards a Lagrangian and energy-conserving solution of the Euler equations. Furthermore, if we consider solutions with bounded initial vorticity, we prove a quantitative rate of convergence of q(alpha) to omega in L-p , for p is an element of (1,infinity).
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Strong Convergence of the Vorticity for the 2D Euler Equations in the Inviscid Limit
    Ciampa, Gennaro
    Crippa, Gianluca
    Spirito, Stefano
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (01) : 295 - 326
  • [2] Strong Convergence of the Vorticity for the 2D Euler Equations in the Inviscid Limit
    Gennaro Ciampa
    Gianluca Crippa
    Stefano Spirito
    Archive for Rational Mechanics and Analysis, 2021, 240 : 295 - 326
  • [3] Energy conservation of weak solutions for the incompressible Euler equations via vorticity
    Liu, Jitao
    Wang, Yanqing
    Ye, Yulin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 372 : 254 - 279
  • [4] Conservation of energy for the Euler–Korteweg equations
    Tomasz Dębiec
    Piotr Gwiazda
    Agnieszka Świerczewska-Gwiazda
    Athanasios Tzavaras
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [5] Energy Conservation in 2-D Density-Dependent Euler Equations with Regularity Assumptions on the Vorticity
    Qing Chen
    Journal of Mathematical Fluid Mechanics, 2020, 22
  • [6] Energy Conservation in 2-D Density-Dependent Euler Equations with Regularity Assumptions on the Vorticity
    Chen, Qing
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (01)
  • [7] Conservation of energy for the Euler-Korteweg equations
    Debiec, Tomasz
    Gwiazda, Piotr
    Swierczewska-Gwiazda, Agnieszka
    Tzavaras, Athanasios
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (06)
  • [8] Energy Conservation for the Compressible Euler Equations and Elastodynamics
    Ye, Yulin
    Wang, Yanqing
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2025, 27 (01)
  • [9] Regularity and Energy Conservation for the Compressible Euler Equations
    Eduard Feireisl
    Piotr Gwiazda
    Agnieszka Świerczewska-Gwiazda
    Emil Wiedemann
    Archive for Rational Mechanics and Analysis, 2017, 223 : 1375 - 1395
  • [10] On the Energy and Helicity Conservation of the Incompressible Euler Equations
    Wang, Yanqing
    Wei, Wei
    Wu, Gang
    Ye, Yulin
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (04)