BAYESIAN CALIBRATION WITH ADAPTIVE MODEL DISCREPANCY

被引:0
|
作者
Leoni, Nicolas [1 ,2 ]
Le Maitre, Olivier [3 ]
Rodio, Maria-Giovanna [2 ]
Congedo, Pietro Marco [1 ]
机构
[1] Inria, Ecole Polytech, Ctr Math Appl, IPP, Route Saclay, F-91128 Palaiseau, France
[2] ISAS, Commissariat Energie Atom & Energies Alternaves, D36, D36, F-91191 Gif Sur Yvette, France
[3] Inria, Ecole Polytech, CNRS, Ctr Math Appl,IPP, Route Saclay, F-91128 Palaiseau, France
关键词
KEY WORDS; uncertainty quantification; Bayesian calibration; model error; model discrepancy; identifiability; COMPUTER; VALIDATION; SELECTION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Original Manuscript Draft We investigate a computer model calibration technique inspired by the well-known Bayesian framework of Kennedy and O'Hagan (KOH). We tackle the full Bayesian formulation where model parameter and model discrepancy hyper parameters are estimated jointly and reduce the problem dimensionality by introducing a functional relationship that we call the full maximum a posteriori (FMP) method. This method also eliminates the need for a true value of model parameters that caused identifiability issues in the KOH formulation. When the joint posterior is approximated as a mixture of Gaussians, the FMP calibration is proven to avoid some pitfalls of the KOH calibration, namely missing some probability regions and underestimating the posterior variance. We then illustrate two numerical examples where both model error and measurement uncertainty are estimated together. Using the solution to the full Bayesian problem as a reference, we show that the FMP results are accurate and robust, and avoid the need for high-dimensional Markov chains for sampling.
引用
收藏
页码:19 / 41
页数:23
相关论文
共 50 条
  • [41] Efficient Bayesian automatic calibration of a functional-structural wheat model using an adaptive design and a metamodelling approach
    Blanc, Emmanuelle
    Enjalbert, Jerome
    Flutre, Timothee
    Barbillon, Pierre
    JOURNAL OF EXPERIMENTAL BOTANY, 2023, 74 (21) : 6722 - 6734
  • [42] A bayesian model calibration under insufficient data environment
    Jeonghwan Choo
    Yongsu Jung
    Ikjin Lee
    Structural and Multidisciplinary Optimization, 2022, 65
  • [43] BAYESIAN CALIBRATION OF A NATURAL HISTORY MODEL FOR COLORECTAL CANCER
    Whyte, S.
    Walsh, C.
    Sharp, L.
    O'Ceilleachair, A.
    Tilson, L.
    Usher, C.
    Chilcott, J.
    Tappenden, P.
    Staines, A.
    Comber, H.
    Barry, M.
    VALUE IN HEALTH, 2009, 12 (07) : A395 - A395
  • [44] Bayesian Model Calibration Using Geotechnical Centrifuge Tests
    Zhang, L. L.
    Tang, W. H.
    Zhang, L. M.
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2009, 135 (02) : 291 - 299
  • [45] BAYESIAN CALIBRATION OF A SIMULATION MODEL OF OPIOID USE DISORDER
    Mudiyanselage, Rajapaksha Wasala A. M.
    Wang, J.
    Linas, B. P.
    White, L. F.
    Chrysanthopoulou, S.
    VALUE IN HEALTH, 2022, 25 (12) : S6 - S6
  • [46] CALIBRATION OF THE STOCHASTIC MULTICLOUD MODEL USING BAYESIAN INFERENCE
    De La Chevrotiere, Michele
    Khouider, Boualem
    Majda, Andrew J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03): : B538 - B560
  • [47] Review on building energy model calibration by Bayesian inference
    Hou, D.
    Hassan, I. G.
    Wang, L.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 143
  • [48] Bayesian Model Calibration for Geotechnical Design of Energy Piles
    Luo, Zhe
    Hu, Biao
    ENGINEERING, MONITORING, AND MANAGEMENT OF GEOTECHNICAL INFRASTRUCTURE (GEO-CONGRESS 2020 ), 2020, (316): : 677 - 685
  • [49] Bayesian optimal experimental design for constitutive model calibration
    Ricciardi, D. E.
    Seidl, D. T.
    Lester, B. T.
    Jones, A. R.
    Jones, E. M. C.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 265
  • [50] Bayesian Calibration of the Community Land Model Using Surrogates
    Ray, J.
    Hou, Z.
    Huang, M.
    Sargsyan, K.
    Swiler, L.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2015, 3 (01): : 199 - 233