BAYESIAN CALIBRATION WITH ADAPTIVE MODEL DISCREPANCY

被引:0
|
作者
Leoni, Nicolas [1 ,2 ]
Le Maitre, Olivier [3 ]
Rodio, Maria-Giovanna [2 ]
Congedo, Pietro Marco [1 ]
机构
[1] Inria, Ecole Polytech, Ctr Math Appl, IPP, Route Saclay, F-91128 Palaiseau, France
[2] ISAS, Commissariat Energie Atom & Energies Alternaves, D36, D36, F-91191 Gif Sur Yvette, France
[3] Inria, Ecole Polytech, CNRS, Ctr Math Appl,IPP, Route Saclay, F-91128 Palaiseau, France
关键词
KEY WORDS; uncertainty quantification; Bayesian calibration; model error; model discrepancy; identifiability; COMPUTER; VALIDATION; SELECTION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Original Manuscript Draft We investigate a computer model calibration technique inspired by the well-known Bayesian framework of Kennedy and O'Hagan (KOH). We tackle the full Bayesian formulation where model parameter and model discrepancy hyper parameters are estimated jointly and reduce the problem dimensionality by introducing a functional relationship that we call the full maximum a posteriori (FMP) method. This method also eliminates the need for a true value of model parameters that caused identifiability issues in the KOH formulation. When the joint posterior is approximated as a mixture of Gaussians, the FMP calibration is proven to avoid some pitfalls of the KOH calibration, namely missing some probability regions and underestimating the posterior variance. We then illustrate two numerical examples where both model error and measurement uncertainty are estimated together. Using the solution to the full Bayesian problem as a reference, we show that the FMP results are accurate and robust, and avoid the need for high-dimensional Markov chains for sampling.
引用
收藏
页码:19 / 41
页数:23
相关论文
共 50 条
  • [31] Optimal Bayesian Adaptive Design for Test-Item Calibration
    van der Linden, Wim J.
    Ren, Hao
    PSYCHOMETRIKA, 2015, 80 (02) : 263 - 288
  • [32] Reassessment of a calibration model by Bayesian reference analysis
    Grientschnig, Dieter
    Lira, Ignacio
    METROLOGIA, 2011, 48 (01) : L7 - L11
  • [33] Fast matrix algebra for Bayesian model calibration
    Rumsey, Kellin N.
    Huerta, Gabriel
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (07) : 1331 - 1341
  • [34] Bayesian model calibration using subset simulation
    Gong, Z. T.
    DiazDelaO, F. A.
    Beer, M.
    RISK, RELIABILITY AND SAFETY: INNOVATING THEORY AND PRACTICE, 2017, : 293 - 298
  • [35] Bayesian calibration for multiple source regression model
    Ignatyev, Dmitry I.
    Shin, Hyo-Sang
    Tsourdos, Antonios
    NEUROCOMPUTING, 2018, 318 : 55 - 64
  • [36] A BAYESIAN CALIBRATION FRAMEWORK WITH EMBEDDED MODEL ERROR FOR MODEL DIAGNOSTICS
    Hegde, Arun
    Weiss, Elan
    Windl, Wolfgang
    Najm, Habib N.
    Safta, Cosmin
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2024, 14 (06) : 37 - 70
  • [37] The Adaptive Calibration Model of stress responsivity
    Del Giudice, Marco
    Ellis, Bruce J.
    Shirtcliff, Elizabeth A.
    NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2011, 35 (07): : 1562 - 1592
  • [38] Feature Adaptive Generator Model Calibration
    Wang, Honggang
    Wang, Pengyuan
    Menon, Anup
    Parashar, Manu
    Srinivasan, Krish
    Chen, Sherman
    Markham, Ron
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [39] A Hierarchical Bayesian Model of Adaptive Teaching
    Chen, Alicia M.
    Palacci, Andrew
    Velez, Natalia
    Hawkins, Robert D.
    Gershman, Samuel J.
    COGNITIVE SCIENCE, 2024, 48 (07)
  • [40] A new Bayesian discrepancy measure
    Bertolino, Francesco
    Manca, Mara
    Musio, Monica
    Racugno, Walter
    Ventura, Laura
    STATISTICAL METHODS AND APPLICATIONS, 2024, 33 (02): : 381 - 405