A machine learning-based approach for flames classification in industrial Heavy Oil-Fire Boilers

被引:6
|
作者
Ronquillo-Lomeli, Guillermo [1 ]
Garcia-Moreno, Angel-Ivan [1 ,2 ]
机构
[1] Ctr Ingn & Desarrollo Ind CIDESI, Ave Playa Pie Cuesta 702, Queretaro 76125, Mexico
[2] Consejo Nacl Human Ciencia & Tecnol CONAHCYT, Ave Insurgentes Sur 1582, Mexico City 03940, Mexico
关键词
Flame classification; Feature selection; Neural networks; Heavy oil-fired boilers; COMBUSTION PROCESS; FEATURE-SELECTION;
D O I
10.1016/j.eswa.2023.122188
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The burner combustion tuning is a complex problem that has been studied through flame monitoring and characterization. It has been observed that the flame electromagnetic spectrum and flickering contain specific flame information in combustion processes. This information is helpful for combustion stoichiometry tuning on burners. This paper described a method for selecting the best flame feature subset that can be computed from the scanner signal, in order to get the flame index and induce combustion stoichiometry on burners under specific combustion conditions. We propose a method for selecting a reduced subset with only the useful flame features for flame index classification. To extract the most relevant flame features we use a feature subset selection (FSS) algorithm and to determine the combustion state in burners, five flame indices were defined that represent the most common flame states in oil fuel-fired boilers. FSS includes complete, sequential, and random searches in order to eliminate redundant and noisy flame features to decrease the flame feature set dimension. A probabilistic neural network (PNN) algorithm was implemented for flame feature clustering. Signals from the actual flame scanner system and relevant variables from the boiler data acquisition system were used by the algorithms to calculate the burner flame index. A set of parametric tests was done in a heavy oil-fired boiler under well-known flame and index conditions to train and test the flame classifier. The results showed that only the four more relevant features are enough to classify flames with a good performance (92.3% accuracy), which is useful for burner combustion monitoring and optimization.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Machine learning-based ransomware classification of Bitcoin transactions
    Dib, Omar
    Nan, Zhenghan
    Liu, Jinkua
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (01)
  • [22] A machine learning-based underwater noise classification method
    Song, Guoli
    Guo, Xinyi
    Wang, Wenbo
    Ren, Qunyan
    Li, Jun
    Ma, Li
    APPLIED ACOUSTICS, 2021, 184
  • [23] Machine Learning-Based Classification Models for Diagnosis of Diabetes
    Jaiswal S.
    Jaiswal T.
    Recent Advances in Computer Science and Communications, 2022, 15 (06) : 813 - 821
  • [24] Optimizing diabetes classification with a machine learning-based framework
    Feng, Xin
    Cai, Yihuai
    Xin, Ruihao
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [25] Optimizing diabetes classification with a machine learning-based framework
    Xin Feng
    Yihuai Cai
    Ruihao Xin
    BMC Bioinformatics, 24
  • [26] Machine Learning-Based Classification of Vector Vortex Beams
    Giordani, Taira
    Suprano, Alessia
    Polino, Emanuele
    Acanfora, Francesca
    Innocenti, Luca
    Ferraro, Alessandro
    Paternostro, Mauro
    Spagnolo, Nicolo
    Sciarrino, Fabio
    PHYSICAL REVIEW LETTERS, 2020, 124 (16)
  • [27] Machine Learning-Based Water Quality Classification Assessment
    Chen, Wenliang
    Xu, Duo
    Pan, Bowen
    Zhao, Yuan
    Song, Yan
    WATER, 2024, 16 (20)
  • [28] Machine learning-based approach to GPS antijamming
    Wang, Cheng-Zhen
    Kong, Ling-Wei
    Jiang, Junjie
    Lai, Ying-Cheng
    GPS SOLUTIONS, 2021, 25 (03)
  • [29] Machine learning-based classification and diagnosis of clinical cardiomyopathies
    Alimadadi, Ahmad
    Manandhar, Ishan
    Aryal, Sachin
    Munroe, Patricia B.
    Joe, Bina
    Cheng, Xi
    PHYSIOLOGICAL GENOMICS, 2020, 52 (09) : 391 - 400
  • [30] A Machine Learning-based Approach for Groundwater Mapping
    Zzaman, Rashed Uz
    Nowreen, Sara
    Khan, Irtesam Mahmud
    Islam, Md Rajibul
    Ibtehaz, Nabil
    Rahman, M. Saifur
    Zahid, Anwar
    Farzana, Dilruba
    Sharmin, Afroza
    Rahman, M. Sohel
    NATURAL RESOURCES RESEARCH, 2022, 31 (01) : 281 - 299