Machine Learning-Based Classification Models for Diagnosis of Diabetes

被引:0
|
作者
Jaiswal S. [1 ]
Jaiswal T. [2 ]
机构
[1] Department of CSIT, Guru Ghasidas Central University, Chhattisgarh, Bilaspur
[2] Department of Computer Applications, National Institute of Technology, Chhattisgarh, Raipur
关键词
computational–procedure; decision-tree; Diabetes judgement; diabetes mellitus; FES; J48; machine learning; MFIS; MLP; NB; SVM;
D O I
10.2174/2666255814666210201103252
中图分类号
学科分类号
摘要
Introduction: The goal of this study is to expand the diabetes decision-making framework through the advancement of computational intelligence. Several artificial network and ma-chine-learning-based methods have been developed and validated, most of which are based on the Pima Indian dataset. So far, no method has reached an accuracy of 99-100%. Various tools such as Machine Learning (ML) and Data Mining are used for the correct identification of diabetes. These tools improve the diagnostic process associated with T2DM. Diabetes mellitus type 2 (DMT2) is a major problem in several developing countries, and its early diagnosis can save several people’s lives. Accordingly, we have to build a structure that diagnoses type 2 diabetes. This paper proposes a fuzzy expert system that uses the Mamdani fuzzy inference structure (MFIS) to diagnose type 2 diabetes accurately. The proposed research work has been created using a variety of machine learning algorithms such as J48 Decision-tree (DT), Multilayer perceptron (MLP), Support-vector-machine (SVM), Naive-Bayes (NB), Fusion, and Mixed fusion-based. Actual data from the UCI machine learning datasets are used to validate the advanced Fuzzy expert system (FES) and machine learning algorithms. Objective: A review of recent advances in machine learning-based classification models for diabetes diagnosis is presented in this survey paper. Methods: This paper compares modified fusion processes to fundamental models such as radial basis function, K-nearest neighbor, support vector machine, J48, logistic regression, classifica-tion, regression trees, etc., for diagnosing type 2 diabetes. Results: Figs. 3 and 4 show the results for each classifier based on prediction accuracy. Conclusion: The fuzzy expert system is the best among its rival classifiers. SVM performs very poorly with a very low true positive rate, i.e., a very high number of positive cases misclassified as (non-diabetic) negative. Based on the evaluation, it is clear that the fuzzy expert system has the highest precision value. However, J48 is the least accurate classifier. Compared to the other clas-sifiers listed in the testing section, it has the greatest number of false positives. The results show that the fuzzy expert system has the uppermost cost for both precision and recall. Thus, it has the uppermost value for F-measure in the training and testing datasets. J48 is considered the second-best classifier for the training dataset, whereas Naïve Bayes comes in the second rank in the testing dataset. © 2022 Bentham Science Publishers.
引用
收藏
页码:813 / 821
页数:8
相关论文
共 50 条
  • [1] Optimizing diabetes classification with a machine learning-based framework
    Feng, Xin
    Cai, Yihuai
    Xin, Ruihao
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [2] Optimizing diabetes classification with a machine learning-based framework
    Xin Feng
    Yihuai Cai
    Ruihao Xin
    BMC Bioinformatics, 24
  • [3] Machine learning-based classification and diagnosis of clinical cardiomyopathies
    Alimadadi, Ahmad
    Manandhar, Ishan
    Aryal, Sachin
    Munroe, Patricia B.
    Joe, Bina
    Cheng, Xi
    PHYSIOLOGICAL GENOMICS, 2020, 52 (09) : 391 - 400
  • [4] Improved Machine Learning-Based Predictive Models for Breast Cancer Diagnosis
    Rasool, Abdur
    Bunterngchit, Chayut
    Tiejian, Luo
    Islam, Md Ruhul
    Qu, Qiang
    Jiang, Qingshan
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (06)
  • [5] Machine Learning-Based Volume Diagnosis
    Wang, Seongmoon
    Wei, Wenlong
    DATE: 2009 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, VOLS 1-3, 2009, : 902 - 905
  • [6] A Study on Machine Learning-Based Feature Classification for the Early Diagnosis of Blade Rubbing
    Park, Dong-hee
    Choi, Byeong-keun
    SENSORS, 2024, 24 (18)
  • [7] Machine Learning-Based Feature Selection and Classification for the Experimental Diagnosis of Trypanosoma cruzi
    Hevia-Montiel, Nidiyare
    Perez-Gonzalez, Jorge
    Neme, Antonio
    Haro, Paulina
    ELECTRONICS, 2022, 11 (05)
  • [8] Machine Learning-Based Network Attack Classification
    Liang, Tianhong
    Ma, Li
    Wang, Zhichuang
    Hou, Fangyuan
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 2392 - 2397
  • [9] Machine learning-based classification of maritime accidents
    Atak, Ustun
    Demiray, Ahmet
    SHIPS AND OFFSHORE STRUCTURES, 2025,
  • [10] Machine Learning-Based Classification of Dislocation Microstructures
    Steinberger, Dominik
    Song, Hengxu
    Sandfeld, Stefan
    FRONTIERS IN MATERIALS, 2019, 6