Machine Learning-Based Classification Models for Diagnosis of Diabetes

被引:0
|
作者
Jaiswal S. [1 ]
Jaiswal T. [2 ]
机构
[1] Department of CSIT, Guru Ghasidas Central University, Chhattisgarh, Bilaspur
[2] Department of Computer Applications, National Institute of Technology, Chhattisgarh, Raipur
关键词
computational–procedure; decision-tree; Diabetes judgement; diabetes mellitus; FES; J48; machine learning; MFIS; MLP; NB; SVM;
D O I
10.2174/2666255814666210201103252
中图分类号
学科分类号
摘要
Introduction: The goal of this study is to expand the diabetes decision-making framework through the advancement of computational intelligence. Several artificial network and ma-chine-learning-based methods have been developed and validated, most of which are based on the Pima Indian dataset. So far, no method has reached an accuracy of 99-100%. Various tools such as Machine Learning (ML) and Data Mining are used for the correct identification of diabetes. These tools improve the diagnostic process associated with T2DM. Diabetes mellitus type 2 (DMT2) is a major problem in several developing countries, and its early diagnosis can save several people’s lives. Accordingly, we have to build a structure that diagnoses type 2 diabetes. This paper proposes a fuzzy expert system that uses the Mamdani fuzzy inference structure (MFIS) to diagnose type 2 diabetes accurately. The proposed research work has been created using a variety of machine learning algorithms such as J48 Decision-tree (DT), Multilayer perceptron (MLP), Support-vector-machine (SVM), Naive-Bayes (NB), Fusion, and Mixed fusion-based. Actual data from the UCI machine learning datasets are used to validate the advanced Fuzzy expert system (FES) and machine learning algorithms. Objective: A review of recent advances in machine learning-based classification models for diabetes diagnosis is presented in this survey paper. Methods: This paper compares modified fusion processes to fundamental models such as radial basis function, K-nearest neighbor, support vector machine, J48, logistic regression, classifica-tion, regression trees, etc., for diagnosing type 2 diabetes. Results: Figs. 3 and 4 show the results for each classifier based on prediction accuracy. Conclusion: The fuzzy expert system is the best among its rival classifiers. SVM performs very poorly with a very low true positive rate, i.e., a very high number of positive cases misclassified as (non-diabetic) negative. Based on the evaluation, it is clear that the fuzzy expert system has the highest precision value. However, J48 is the least accurate classifier. Compared to the other clas-sifiers listed in the testing section, it has the greatest number of false positives. The results show that the fuzzy expert system has the uppermost cost for both precision and recall. Thus, it has the uppermost value for F-measure in the training and testing datasets. J48 is considered the second-best classifier for the training dataset, whereas Naïve Bayes comes in the second rank in the testing dataset. © 2022 Bentham Science Publishers.
引用
收藏
页码:813 / 821
页数:8
相关论文
共 50 条
  • [21] A machine learning-based underwater noise classification method
    Song, Guoli
    Guo, Xinyi
    Wang, Wenbo
    Ren, Qunyan
    Li, Jun
    Ma, Li
    APPLIED ACOUSTICS, 2021, 184
  • [22] Machine Learning-Based Classification of Vector Vortex Beams
    Giordani, Taira
    Suprano, Alessia
    Polino, Emanuele
    Acanfora, Francesca
    Innocenti, Luca
    Ferraro, Alessandro
    Paternostro, Mauro
    Spagnolo, Nicolo
    Sciarrino, Fabio
    PHYSICAL REVIEW LETTERS, 2020, 124 (16)
  • [23] Machine Learning-Based Water Quality Classification Assessment
    Chen, Wenliang
    Xu, Duo
    Pan, Bowen
    Zhao, Yuan
    Song, Yan
    WATER, 2024, 16 (20)
  • [24] Analytics of machine learning-based algorithms for text classification
    Hassan, Sayar Ul
    Ahamed, Jameel
    Ahmad, Khaleel
    Sustainable Operations and Computers, 2022, 3 : 238 - 248
  • [25] Machine Learning-Based Traffic Classification of Wireless Traffic
    Song, Ronggong
    Willink, Tricia
    2019 INTERNATIONAL CONFERENCE ON MILITARY COMMUNICATIONS AND INFORMATION SYSTEMS (ICMCIS), 2019,
  • [26] Machine Learning-Based Ransomware Classification of Bitcoin Transactions
    Alsaif, Suleiman Ali
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2023, 2023
  • [27] Machine Learning-based Classification of Online Industrial Datasets
    Faber, Rastislav
    L'ubusky, Karol
    Paulen, Radoslav
    2023 24TH INTERNATIONAL CONFERENCE ON PROCESS CONTROL, PC, 2023, : 132 - 137
  • [28] Ensemble feature selection and classification methods for machine learning-based coronary artery disease diagnosis
    Kolukisa, Burak
    Bakir-Gungor, Burcu
    COMPUTER STANDARDS & INTERFACES, 2023, 84
  • [29] Clinical Application of Machine Learning-Based Artificial Intelligence in the Diagnosis, Prediction, and Classification of Cardiovascular Diseases
    Shu, Songren
    Ren, Jie
    Song, Jiangping
    CIRCULATION JOURNAL, 2021, 85 (09) : 1416 - 1425
  • [30] Deep Learning and Machine Learning-Based Model for Conversational Sentiment Classification
    Ullah, Sami
    Talib, Muhammad Ramzan
    Rana, Toqir A.
    Hanif, Muhammad Kashif
    Awais, Muhammad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (02): : 2323 - 2339