A Study on Machine Learning-Based Feature Classification for the Early Diagnosis of Blade Rubbing

被引:0
|
作者
Park, Dong-hee [1 ]
Choi, Byeong-keun [2 ]
机构
[1] DAVISS Inc, Jinju 52828, South Korea
[2] Gyeongsang Natl Univ, Dept Energy & Mech Engn, Tongyeong 53064, South Korea
关键词
machine learning; feature-based diagnosis; blade rubbing; turbine blade; signal preprocessing; bandpass filter; band reject filter; diagnosis;
D O I
10.3390/s24186013
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This research focuses on the development of a machine learning-based approach for the early diagnosis of blade rubbing in rotary machinery. In this paper, machine learning-based diagnostic methods are used for blade rubbing early diagnosis, and the faults are simulated using experimental models. The experimental conditions were simulated as follows: Excessive rotor vibration is generated by an unbalance mass, and blade rubbing occurs through excessive rotor vibration. Additionally, the severity of blade rubbing was also simulated while increasing the unbalance mass. And then, machine learning-based diagnostic methods were applied and the trends according to the severity of blade rubbing were compared. This paper provides a signal processing method through feature analysis to diagnose blade rubbing conditions in machine learning. It was confirmed that the results of the unbalance and blade rubbing represent different trends, and it is possible to distinguish unbalance from blade rubbing before blade rubbing occurs. The diagnosis using machine learning methods will be applicable to rotating machinery faults like blade rubbing; furthermore, the early diagnosis of blade rubbing will be possible.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Machine Learning-Based Feature Selection and Classification for the Experimental Diagnosis of Trypanosoma cruzi
    Hevia-Montiel, Nidiyare
    Perez-Gonzalez, Jorge
    Neme, Antonio
    Haro, Paulina
    ELECTRONICS, 2022, 11 (05)
  • [2] Development of features for blade rubbing defect classification in machine learning
    Park, Dong Hee
    Lee, Jeong Jun
    Cheong, Deok Yeong
    Eom, Ye Jun
    Kim, Seon Hwa
    Choi, Byeong Keun
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (01) : 1 - 9
  • [3] Development of features for blade rubbing defect classification in machine learning
    Dong Hee Park
    Jeong Jun Lee
    Deok Yeong Cheong
    Ye Jun Eom
    Seon Hwa Kim
    Byeong Keun Choi
    Journal of Mechanical Science and Technology, 2024, 38 : 1 - 9
  • [4] Machine Learning-Based Classification Models for Diagnosis of Diabetes
    Jaiswal S.
    Jaiswal T.
    Recent Advances in Computer Science and Communications, 2022, 15 (06) : 813 - 821
  • [5] Machine learning-based classification and diagnosis of clinical cardiomyopathies
    Alimadadi, Ahmad
    Manandhar, Ishan
    Aryal, Sachin
    Munroe, Patricia B.
    Joe, Bina
    Cheng, Xi
    PHYSIOLOGICAL GENOMICS, 2020, 52 (09) : 391 - 400
  • [6] Ensemble feature selection and classification methods for machine learning-based coronary artery disease diagnosis
    Kolukisa, Burak
    Bakir-Gungor, Burcu
    COMPUTER STANDARDS & INTERFACES, 2023, 84
  • [7] Feature optimization method for machine learning-based diagnosis of schizophrenia using magnetoencephalography
    Kim, Jieun
    Kim, Min-Young
    Kwon, Hyukchan
    Kim, Ji-Woong
    Im, Woo-Young
    Lee, Sang Min
    Kim, Kiwoong
    Kim, Seung Jun
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 338
  • [8] Incorporating feature selection methods into a machine learning-based neonatal seizure diagnosis
    Acikoglu, Merve
    Tuncer, Seda Arslan
    MEDICAL HYPOTHESES, 2020, 135
  • [9] Machine Learning-Based Feature Extraction and Selection
    Ruano-Ordas, David
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [10] Machine Learning-Based Volume Diagnosis
    Wang, Seongmoon
    Wei, Wenlong
    DATE: 2009 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, VOLS 1-3, 2009, : 902 - 905