GOA-optimized deep learning for soybean yield estimation using multi-source remote sensing data

被引:10
|
作者
Lu, Jian [1 ]
Fu, Hongkun [2 ]
Tang, Xuhui [3 ]
Liu, Zhao [4 ]
Huang, Jujian [5 ]
Zou, Wenlong [4 ]
Chen, Hui [4 ]
Sun, Yue [4 ]
Ning, Xiangyu [4 ]
Li, Jian [1 ]
机构
[1] Jilin Agr Univ, Inst Smart Agr, Changchun 130118, Peoples R China
[2] Jilin Agr Univ, Coll Agr, Changchun 130118, Peoples R China
[3] Jilin Agr Univ, Coll Informat Technol, Changchun 130118, Peoples R China
[4] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun 130102, Peoples R China
[5] Jilin Jianzhu Univ, Coll Surveying & Explorat Engn, Changchun 130119, Peoples R China
关键词
GOA; Deep learning framework; Multi-source remote sensing data; Soybean yield estimation; Photosynthesis-related parameters; CROP YIELD; WHEAT YIELD; ALGORITHM THEORY; CLIMATE DATA; TIME-SERIES; DROUGHT; VEGETATION; PREDICTION; SATELLITE; IMAGERY;
D O I
10.1038/s41598-024-57278-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurately estimating large-area crop yields, especially for soybeans, is essential for addressing global food security challenges. This study introduces a deep learning framework that focuses on precise county-level soybean yield estimation in the United States. It utilizes a wide range of multi-variable remote sensing data. The model used in this study is a state-of-the-art CNN-BiGRU model, which is enhanced by the GOA and a novel attention mechanism (GCBA). This model excels in handling intricate time series and diverse remote sensing datasets. Compared to five leading machine learning and deep learning models, our GCBA model demonstrates superior performance, particularly in the 2019 and 2020 evaluations, achieving remarkable R2, RMSE, MAE and MAPE values. This sets a new benchmark in yield estimation accuracy. Importantly, the study highlights the significance of integrating multi-source remote sensing data. It reveals that synthesizing information from various sensors and incorporating photosynthesis-related parameters significantly enhances yield estimation precision. These advancements not only provide transformative insights for precision agricultural management but also establish a solid scientific foundation for informed decision-making in global agricultural production and food security.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Integrating Multi-Source Data for Rice Yield Prediction across China using Machine Learning and Deep Learning Approaches
    Cao, Juan
    Zhang, Zhao
    Tao, Fulu
    Zhang, Liangliang
    Luo, Yuchuan
    Zhang, Jing
    Han, Jichong
    Xie, Jun
    AGRICULTURAL AND FOREST METEOROLOGY, 2021, 297
  • [42] Oil palm yield prediction across blocks from multi-source data using machine learning and deep learning
    Yuhao Ang
    Helmi Zulhaidi Mohd Shafri
    Yang Ping Lee
    Shahrul Azman Bakar
    Haryati Abidin
    Mohd Umar Ubaydah Mohd Junaidi
    Shaiful Jahari Hashim
    Nik Norasma Che’Ya
    Mohd Roshdi Hassan
    Hwee San Lim
    Rosni Abdullah
    Yusri Yusup
    Syahidah Akmal Muhammad
    Sin Yin Teh
    Mohd Na’aim Samad
    Earth Science Informatics, 2022, 15 : 2349 - 2367
  • [43] Oil palm yield prediction across blocks from multi-source data using machine learning and deep learning
    Ang, Yuhao
    Shafri, Helmi Zulhaidi Mohd
    Lee, Yang Ping
    Bakar, Shahrul Azman
    Abidin, Haryati
    Junaidi, Mohd Umar Ubaydah Mohd
    Hashim, Shaiful Jahari
    Che'Ya, Nik Norasma
    Hassan, Mohd Roshdi
    San Lim, Hwee
    Abdullah, Rosni
    Yusup, Yusri
    Muhammad, Syahidah Akmal
    Teh, Sin Yin
    Samad, Mohd Na'aim
    EARTH SCIENCE INFORMATICS, 2022, 15 (04) : 2349 - 2367
  • [44] Dynamic Maize Yield Predictions Using Machine Learning on Multi-Source Data
    Croci, Michele
    Impollonia, Giorgio
    Meroni, Michele
    Amaducci, Stefano
    REMOTE SENSING, 2023, 15 (01)
  • [45] Monitoring coal fires in Datong coalfield using multi-source remote sensing data
    Wang, Yun-jia
    Tian, Feng
    Huang, Yi
    Wang, Jian
    Wei, Chang-jing
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (10) : 3421 - 3428
  • [46] Soil moisture content inversion research using multi-source remote sensing data
    Zhang Chengcai
    Zhu Zule
    LAND SURFACE REMOTE SENSING II, 2014, 9260
  • [47] Spatial Scaling of Forest Aboveground Biomass Using Multi-Source Remote Sensing Data
    Wang, Xinchuang
    Jiao, Haiming
    IEEE ACCESS, 2020, 8 : 178870 - 178885
  • [48] Multi-source Remote Sensing Images Data Integration and Sharing Using Agent Service
    Cui, Binge
    Chen, Xin
    Song, Pingjian
    Liu, Rongjie
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2009, PROCEEDINGS, 2009, 5802 : 235 - +
  • [49] The Potential of Moonlight Remote Sensing: A Systematic Assessment with Multi-Source Nightlight Remote Sensing Data
    Liu, Di
    Zhang, Qingling
    Wang, Jiao
    Wang, Yifang
    Shen, Yanyun
    Shuai, Yanmin
    REMOTE SENSING, 2021, 13 (22)
  • [50] Algorithmic Research on Hydrogeological Comprehensive Monitoring Using Multi-Source Remote Sensing Data
    Yuan, Yuan
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, : 218 - 223