GOA-optimized deep learning for soybean yield estimation using multi-source remote sensing data

被引:10
|
作者
Lu, Jian [1 ]
Fu, Hongkun [2 ]
Tang, Xuhui [3 ]
Liu, Zhao [4 ]
Huang, Jujian [5 ]
Zou, Wenlong [4 ]
Chen, Hui [4 ]
Sun, Yue [4 ]
Ning, Xiangyu [4 ]
Li, Jian [1 ]
机构
[1] Jilin Agr Univ, Inst Smart Agr, Changchun 130118, Peoples R China
[2] Jilin Agr Univ, Coll Agr, Changchun 130118, Peoples R China
[3] Jilin Agr Univ, Coll Informat Technol, Changchun 130118, Peoples R China
[4] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun 130102, Peoples R China
[5] Jilin Jianzhu Univ, Coll Surveying & Explorat Engn, Changchun 130119, Peoples R China
关键词
GOA; Deep learning framework; Multi-source remote sensing data; Soybean yield estimation; Photosynthesis-related parameters; CROP YIELD; WHEAT YIELD; ALGORITHM THEORY; CLIMATE DATA; TIME-SERIES; DROUGHT; VEGETATION; PREDICTION; SATELLITE; IMAGERY;
D O I
10.1038/s41598-024-57278-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurately estimating large-area crop yields, especially for soybeans, is essential for addressing global food security challenges. This study introduces a deep learning framework that focuses on precise county-level soybean yield estimation in the United States. It utilizes a wide range of multi-variable remote sensing data. The model used in this study is a state-of-the-art CNN-BiGRU model, which is enhanced by the GOA and a novel attention mechanism (GCBA). This model excels in handling intricate time series and diverse remote sensing datasets. Compared to five leading machine learning and deep learning models, our GCBA model demonstrates superior performance, particularly in the 2019 and 2020 evaluations, achieving remarkable R2, RMSE, MAE and MAPE values. This sets a new benchmark in yield estimation accuracy. Importantly, the study highlights the significance of integrating multi-source remote sensing data. It reveals that synthesizing information from various sensors and incorporating photosynthesis-related parameters significantly enhances yield estimation precision. These advancements not only provide transformative insights for precision agricultural management but also establish a solid scientific foundation for informed decision-making in global agricultural production and food security.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] River Ecological Protection and Restoration Using Multi-source Remote Sensing Data
    Zhang, Xiangyong
    MOBILE NETWORKS & APPLICATIONS, 2023, 28 (06): : 2118 - 2129
  • [22] Monitoring the Fluctuation of Lake Qinghai Using Multi-Source Remote Sensing Data
    Zhu, Wenbin
    Jia, Shaofeng
    Lv, Aifeng
    REMOTE SENSING, 2014, 6 (11): : 10457 - 10482
  • [23] A high-resolution record of surface melt on Antarctic ice shelves using multi-source remote sensing data and deep learning
    Husman, Sophie de Roda
    Lhermitte, Stef
    Bolibar, Jordi
    Izeboud, Maaike
    Hu, Zhongyang
    Shukla, Shashwat
    van der Meer, Marijn
    Long, David
    Wouters, Bert
    REMOTE SENSING OF ENVIRONMENT, 2024, 301
  • [24] High-resolution quantification of building stock using multi-source remote sensing imagery and deep learning
    Bao, Yi
    Huang, Zhou
    Wang, Han
    Yin, Ganmin
    Zhou, Xiao
    Gao, Yong
    JOURNAL OF INDUSTRIAL ECOLOGY, 2023, 27 (01) : 350 - 361
  • [25] Spatio-temporal analysis of agroforestry systems in hotan using multi-source remote sensing and deep learning
    Kou, Wenqi
    Shen, Zhanfeng
    Zhang, Yihan
    Wang, Haoyu
    Ji, Pengfei
    Huang, Lan
    Zhang, Chi
    Ma, Yubo
    SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [26] Multi-Source Deep Learning for Information Trustworthiness Estimation
    Ge, Liang
    Gao, Jing
    Li, Xiaoyi
    Zhang, Aidong
    19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 766 - 774
  • [27] Multi-source Deep Learning for Human Pose Estimation
    Ouyang, Wanli
    Chu, Xiao
    Wang, Xiaogang
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : CP32 - CP32
  • [28] Global Soil Salinity Estimation at 10 m Using Multi-Source Remote Sensing
    Wang, Nan
    Chen, Songchao
    Huang, Jingyi
    Frappart, Frederic
    Taghizadeh, Ruhollah
    Zhang, Xianglin
    Wigneron, Jean-Pierre
    Xue, Jie
    Xiao, Yi
    Peng, Jie
    Shi, Zhou
    JOURNAL OF REMOTE SENSING, 2024, 4
  • [29] Multi-source remote sensing data fusion: status and trends
    Zhang, Jixian
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2010, 1 (01) : 5 - 24
  • [30] Multi-source remote sensing data fusion in human settlements
    Dang, Anrong
    Mao, Qizhi
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2000, 40 (09): : 7 - 10