Real Schur norms and Hadamard matrices

被引:1
|
作者
Holbrook, John [1 ]
Johnston, Nathaniel [2 ,3 ]
Schoch, Jean-Pierre
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON, Canada
[2] Mt Allison Univ, Dept Math & Comp Sci, Sackville, NB, Canada
[3] Mt Allison Univ, Dept Math & Comp Sci, Sackville, NB E4L 1E4, Canada
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年 / 72卷 / 12期
基金
加拿大自然科学与工程研究理事会;
关键词
Hadamard matrices; Schur norms; almost Hadamard matrices;
D O I
10.1080/03081087.2023.2212317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a preliminary study of Schur norms parallel to M parallel to(S) = max{parallel to M omicron C parallel to : parallel to C parallel to = 1}, where M is a matrix whose entries are +/- 1, and omicron denotes the entrywise (i.e. Schur or Hadamard) product of the matrices. We recover a result of Johnsen that says that, if such a matrix M is n x n, then its Schur norm is bounded by root n, and equality holds if and only if it is a Hadamard matrix. We develop a numerically efficient method of computing Schur norms, and as an application of our results we present several almost Hadamard matrices that are better than were previously known.
引用
收藏
页码:1967 / 1984
页数:18
相关论文
共 50 条
  • [31] GEOMETRY AND THE NORMS OF HADAMARD MULTIPLIERS
    COWEN, CC
    DEBRO, KE
    SEPANSKI, PD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 218 : 239 - 249
  • [32] THE GENERALIZED HADAMARD MATRIX NORMS
    Balonin, N. A.
    Sergeev, M. B.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2014, 10 (02): : 5 - 11
  • [33] Finding norms of Hadamard multipliers
    Cowen, CC
    Ferguson, PA
    Jackman, DK
    Sexauer, EA
    Vogt, C
    Woolf, HJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 247 : 217 - 235
  • [34] Hadamard and conference matrices
    Arasu, KT
    Chen, YQ
    Pott, A
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 14 (02) : 103 - 117
  • [35] SEARCH FOR HADAMARD MATRICES
    GOLOMB, SW
    BAUMERT, LD
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (01): : 12 - &
  • [36] HADAMARD MATRICES AND THEIR APPLICATIONS
    HEDAYAT, A
    WALLIS, WD
    ANNALS OF STATISTICS, 1978, 6 (06): : 1184 - 1238
  • [37] Spectra of Hadamard matrices
    Egan, Ronan
    Cathain, Padraig O.
    Swartz, Eric
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 501 - 512
  • [38] EQUIVALENCE OF HADAMARD MATRICES
    WALLIS, WD
    WALLIS, J
    ISRAEL JOURNAL OF MATHEMATICS, 1969, 7 (02) : 122 - &
  • [39] Power Hadamard matrices
    Craigen, R.
    Woodford, R.
    DISCRETE MATHEMATICS, 2008, 308 (13) : 2868 - 2884
  • [40] ON HADAMARD PRODUCT OF MATRICES
    DJOKOVIC, DZ
    MATHEMATISCHE ZEITSCHRIFT, 1965, 86 (05) : 395 - &