Real Schur norms and Hadamard matrices

被引:1
|
作者
Holbrook, John [1 ]
Johnston, Nathaniel [2 ,3 ]
Schoch, Jean-Pierre
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON, Canada
[2] Mt Allison Univ, Dept Math & Comp Sci, Sackville, NB, Canada
[3] Mt Allison Univ, Dept Math & Comp Sci, Sackville, NB E4L 1E4, Canada
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年 / 72卷 / 12期
基金
加拿大自然科学与工程研究理事会;
关键词
Hadamard matrices; Schur norms; almost Hadamard matrices;
D O I
10.1080/03081087.2023.2212317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a preliminary study of Schur norms parallel to M parallel to(S) = max{parallel to M omicron C parallel to : parallel to C parallel to = 1}, where M is a matrix whose entries are +/- 1, and omicron denotes the entrywise (i.e. Schur or Hadamard) product of the matrices. We recover a result of Johnsen that says that, if such a matrix M is n x n, then its Schur norm is bounded by root n, and equality holds if and only if it is a Hadamard matrix. We develop a numerically efficient method of computing Schur norms, and as an application of our results we present several almost Hadamard matrices that are better than were previously known.
引用
收藏
页码:1967 / 1984
页数:18
相关论文
共 50 条
  • [21] Construction of New Hadamard Matrices Using Known Hadamard Matrices
    Farouk, Adda
    Wang, Qing-Wen
    FILOMAT, 2022, 36 (06) : 2025 - 2042
  • [22] Generalized Hadamard Matrices Whose Transposes Are Not Generalized Hadamard Matrices
    Craigen, R.
    de Launey, W.
    JOURNAL OF COMBINATORIAL DESIGNS, 2009, 17 (06) : 456 - 458
  • [23] SCHUR CONVEXITY AND HADAMARD'S INEQUALITY
    Chu, Yuming
    Wang, Gendi
    Zhang, Xiaohui
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (04): : 725 - 731
  • [24] MATRICES OF SCHUR FUNCTIONS
    MARCUS, M
    KATZ, SM
    DUKE MATHEMATICAL JOURNAL, 1969, 36 (02) : 343 - &
  • [25] MATRICES OF SCHUR FUNCTIONS
    MARCUS, M
    KATZ, SM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 170 - &
  • [26] Norms of idempotent Schur multipliers
    Levene, Rupert H.
    NEW YORK JOURNAL OF MATHEMATICS, 2014, 20 : 325 - 352
  • [27] Results on the Schur stability of the Hadamard powers and the Hadamard product of complex polynomials
    Gora, Michal
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06): : 1047 - 1054
  • [28] On Good Matrices and Skew Hadamard Matrices
    Awyzio, Gene
    Seberry, Jennifer
    ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM, 2015, 133 : 13 - 28
  • [29] FINDING EXTREMAL COMPLEX POLYTOPE NORMS FOR FAMILIES OF REAL MATRICES
    Guglielmi, N.
    Zennaro, M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) : 602 - 620
  • [30] Finding norms of Hadamard multipliers
    Linear Algebra Its Appl, (217):