CRISPR/Cas genome editing system and its application in potato

被引:5
|
作者
Hou, Xin [1 ]
Guo, Xiaomeng [1 ]
Zhang, Yan [1 ]
Zhang, Qiang [1 ]
机构
[1] Shandong Agr Univ, Coll Plant Protect, Tai An, Peoples R China
关键词
potato; gene editing; CRISPR; Cas; genetic improvement; progress; DOUBLE-STRAND BREAKS; TARGETED MUTAGENESIS; HOMOLOGOUS RECOMBINATION; RNA; DNA; BASE; RICE; CPF1; ENDONUCLEASE; TUBERIZATION;
D O I
10.3389/fgene.2023.1017388
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Potato is the largest non-cereal food crop worldwide and a vital substitute for cereal crops, considering its high yield and great nutritive value. It plays an important role in food security. The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system has the advantages of easy operation, high efficiency, and low cost, which shows a potential in potato breeding. In this paper, the action mechanism and derivative types of the CRISPR/Cas system and the application of the CRISPR/Cas system in improving the quality and resistance of potatoes, as well as overcoming the self-incompatibility of potatoes, are reviewed in detail. At the same time, the application of the CRISPR/Cas system in the future development of the potato industry was analyzed and prospected.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Guide RNA Design for CRISPR/Cas9-Mediated Potato Genome Editing
    A. V. Khromov
    V. A. Gushchin
    V. I. Timerbaev
    N. O. Kalinina
    M. E. Taliansky
    V. V. Makarov
    Doklady Biochemistry and Biophysics, 2018, 479 : 90 - 94
  • [42] Guide RNA Design for CRISPR/Cas9-Mediated Potato Genome Editing
    Khromov, A. V.
    Gushchin, V. A.
    Timerbaev, V. I.
    Kalinina, N. O.
    Taliansky, M. E.
    Makarov, V. V.
    DOKLADY BIOCHEMISTRY AND BIOPHYSICS, 2018, 479 (01) : 90 - 94
  • [43] CRISPR/Cas Genome Editing in Filamentous Fungi
    Aleksandra M. Rozhkova
    Valeriy Yu. Kislitsin
    Biochemistry (Moscow), 2021, 86 : S120 - S139
  • [44] Efficient genome editing in zebrafish using a CRISPR-Cas system
    Hwang, Woong Y.
    Fu, Yanfang
    Reyon, Deepak
    Maeder, Morgan L.
    Tsai, Shengdar Q.
    Sander, Jeffry D.
    Peterson, Randall T.
    Yeh, J-R Joanna
    Joung, J. Keith
    NATURE BIOTECHNOLOGY, 2013, 31 (03) : 227 - 229
  • [45] CRISPR/Cas System for Genome Editing: Progress and Prospects as a Therapeutic Tool
    Sahel, Deepak Kumar
    Mittal, Anupama
    Chitkara, Deepak
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2019, 370 (03): : 725 - 735
  • [46] CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing
    Manghwar, Hakim
    Lindsey, Keith
    Zhang, Xianlong
    Jin, Shuangxia
    TRENDS IN PLANT SCIENCE, 2019, 24 (12) : 1102 - 1125
  • [47] CRISPR/Cas in genome defense and gene editing
    Krystofova, Svetlana
    ACTA CHIMICA SLOVACA, 2016, 9 (01): : 68 - 74
  • [48] CRISPR/Cas Genome Editing in Filamentous Fungi
    Rozhkova, Aleksandra M.
    Kislitsin, Valeriy Yu
    BIOCHEMISTRY-MOSCOW, 2021, 86 (SUPPL 1) : S120 - S139
  • [49] Target Residence of CRISPR/Cas in Genome Editing
    Yi-Li, Feng
    Ruo-Dan, Chen
    An-Yong, Xie
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2024, 51 (10) : 2621 - 2636
  • [50] The implementation of the CRISPR-Cas system for Kluyveromyces lactis genome editing
    Gedvilaite, A.
    Ziogiene, D.
    Norkiene, M.
    Valaviciute, M.
    FEBS OPEN BIO, 2018, 8 : 193 - 193