LSD-YOLOv5: A Steel Strip Surface Defect Detection Algorithm Based on Lightweight Network and Enhanced Feature Fusion Mode

被引:17
|
作者
Zhao, Huan [1 ]
Wan, Fang [1 ]
Lei, Guangbo [1 ]
Xiong, Ying [1 ]
Xu, Li [1 ]
Xu, Chengzhi [1 ]
Zhou, Wen [1 ]
机构
[1] Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Peoples R China
基金
中国国家自然科学基金;
关键词
surface defect detection; YOLOv5s; Stem block; MobileNetV2; bottleneck; multi-scale feature fusion; CLASSIFICATION; RECOGNITION;
D O I
10.3390/s23146558
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In the field of metallurgy, the timely and accurate detection of surface defects on metallic materials is a crucial quality control task. However, current defect detection approaches face challenges with large model parameters and low detection rates. To address these issues, this paper proposes a lightweight recognition model for surface damage on steel strips, named LSD-YOLOv5. First, we design a shallow feature enhancement module to replace the first Conv structure in the backbone network. Second, the Coordinate Attention mechanism is introduced into the MobileNetV2 bottleneck structure to maintain the lightweight nature of the model. Then, we propose a smaller bidirectional feature pyramid network (BiFPN-S) and combine it with Concat operation for efficient bidirectional cross-scale connectivity and weighted feature fusion. Finally, the Soft-DIoU-NMS algorithm is employed to enhance the recognition efficiency in scenarios where targets overlap. Compared with the original YOLOv5s, the LSD-YOLOv5 model achieves a reduction of 61.5% in model parameters and a 28.7% improvement in detection speed, while improving recognition accuracy by 2.4%. This demonstrates that the model achieves an optimal balance between detection accuracy and speed, while maintaining a lightweight structure.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] STMS-YOLOv5: A Lightweight Algorithm for Gear Surface Defect Detection
    Yan, Rui
    Zhang, Rangyong
    Bai, Jinqiang
    Hao, Huijuan
    Guo, Wenjie
    Gu, Xiaoyan
    Liu, Qi
    SENSORS, 2023, 23 (13)
  • [32] Insulator Defect Detection Based on Lightweight Network and Enhanced Multi-scale Feature Fusion
    Chen K.
    Liu X.
    Jia L.
    Fang Y.
    Zhao C.
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (03): : 1289 - 1301
  • [33] An Improved YOLOv5 Algorithm for Steel Surface Defect Detection
    Li Shaoxiong
    Shi Zaifeng
    Kong Fanning
    Wang Ruoqi
    Luo Tao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [34] YOLOv5-ACCOF Steel Surface Defect Detection Algorithm
    Xin, Haitao
    Song, Junpeng
    IEEE ACCESS, 2024, 12 : 157496 - 157506
  • [35] A lightweight algorithm for steel surface defect detection using improved YOLOv8
    Ma, Shuangbao
    Zhao, Xin
    Wan, Li
    Zhang, Yapeng
    Gao, Hongliang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [36] Improved YOLOv5 Network for Steel Surface Defect Detection
    Huang, Bo
    Liu, Jianhong
    Liu, Xiang
    Liu, Kang
    Liao, Xinyu
    Li, Kun
    Wang, Jian
    METALS, 2023, 13 (08)
  • [37] AN ALGORITHM FOR DEFECT DETECTION ON THE SURFACE OF STEEL STRIP
    POTAPOV, AI
    MALYGIN, LL
    ERSHOV, EV
    VALIN, PN
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 1995, 31 (03) : 164 - 166
  • [38] EAD-YOLOv10: Lightweight Steel Surface Defect Detection Algorithm Research Based on YOLOv10 Improvement
    Hu, Haoyan
    Tong, Jinwu
    Wang, Haibin
    Lu, Xinyun
    IEEE ACCESS, 2025, 13 : 55382 - 55397
  • [39] Steel Surface Defect Detection Algorithm Based on YOLOv8
    Song, Xuan
    Cao, Shuzhen
    Zhang, Jingwei
    Hou, Zhenguo
    ELECTRONICS, 2024, 13 (05)
  • [40] Swin-Transformer-YOLOv5 for lightweight hot-rolled steel strips surface defect detection algorithm
    Wang, Qiuyan
    Dong, Haibing
    Huang, Haoyue
    PLOS ONE, 2024, 19 (01):