YOLOv5-ACCOF Steel Surface Defect Detection Algorithm

被引:1
|
作者
Xin, Haitao [1 ]
Song, Junpeng [1 ]
机构
[1] Harbin Univ Commerce, Sch Comp & Informat Engn, Harbin 150028, Heilongjiang, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Attention mechanism; defect detection; YOLOv5-ACCOF;
D O I
10.1109/ACCESS.2024.3486110
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Steel surface defect detection is critical for industrial production and quality control. Traditional methods, however, face challenges such as complex scenes and the detection of small defects. To address these issues, we propose a surface defect detection method based on the YOLOv5-ACCOF architecture. Our approach incorporates the Convolutional Block Attention Module (CBAM) into the Backbone core feature extraction module C3, thereby enhancing the focus on key information within the Backbone layer. We replace the conventional SPPF layer with Atrous Spatial Pyramid Pooling (ASPP), improving the model's capability to perceive multi-scale information. The Content-Aware ReAssembly of Features (CARAFE) module substitutes the upsampling module in the Neck layer, enabling content-aware feature reassembly, thereby improving detail retention in the feature maps and enhancing the model's upsampling efficacy. Additionally, we integrate Omni-Directional Dynamic Convolution (ODConv) into the C3 module of the Neck, which facilitates richer feature representation through multi-directional convolution operations, thereby augmenting the model's defect detection capability in complex backgrounds. The loss function is modified to Focaler-IoU, which improves the detector's performance across various detection tasks by focusing on different regression samples. Experimental results demonstrate that our proposed YOLOv5-ACCOF model significantly outperforms the original model, exhibiting robust generalization capabilities, thus verifying its effectiveness and feasibility in practical applications.
引用
收藏
页码:157496 / 157506
页数:11
相关论文
共 50 条
  • [1] An Improved YOLOv5 Algorithm for Steel Surface Defect Detection
    Li Shaoxiong
    Shi Zaifeng
    Kong Fanning
    Wang Ruoqi
    Luo Tao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [2] Surface defect detection of steel based on improved YOLOv5 algorithm
    Jiang, Yiwen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19858 - 19870
  • [3] Research on Optimization of YOLOv5s Detection Algorithm for Steel Surface Defect
    Xu, Hongjun
    Tang, Ziqiang
    Zhang, Jindong
    Zhu, Peihua
    Computer Engineering and Applications, 60 (07): : 306 - 314
  • [4] Steel Surface Defect Detection Algorithm Based on YOLOv8
    Song, Xuan
    Cao, Shuzhen
    Zhang, Jingwei
    Hou, Zhenguo
    ELECTRONICS, 2024, 13 (05)
  • [5] Usage of an improved YOLOv5 for steel surface defect detection
    Wen, Huihui
    Li, Ying
    Wang, Yu
    Wang, Haoyang
    Li, Haolin
    Zhang, Hongye
    Liu, Zhanwei
    MATERIALS TESTING, 2024, 66 (05) : 726 - 735
  • [6] Improved YOLOv5 Network for Steel Surface Defect Detection
    Huang, Bo
    Liu, Jianhong
    Liu, Xiang
    Liu, Kang
    Liao, Xinyu
    Li, Kun
    Wang, Jian
    METALS, 2023, 13 (08)
  • [7] Strip Surface Defect Detection Algorithm Based on YOLOv5
    Wang, Han
    Yang, Xiuding
    Zhou, Bei
    Shi, Zhuohao
    Zhan, Daohua
    Huang, Renbin
    Lin, Jian
    Wu, Zhiheng
    Long, Danfeng
    MATERIALS, 2023, 16 (07)
  • [8] Improved Yolov7-tiny Algorithm for Steel Surface Defect Detection
    Qi, Xiangming
    Dong, Xu
    Computer Engineering and Applications, 2023, 59 (12) : 176 - 183
  • [9] Research on Steel Surface Defect Detection with Improved YOLOv7 Algorithm
    Gao, Chunyan
    Qin, Shen
    Li, Manhong
    Lyv, Xiaoling
    Computer Engineering and Applications, 2024, 60 (07) : 282 - 291
  • [10] A Steel Surface Defect Detection Algorithm Based on Improved YOLOv7
    Mao, Yihai
    Zhang, Hongyi
    Gao, Xingen
    Luan, Shen
    Lin, Yuxing
    Qi, Xuanhao
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1096 - 1101