Tame fundamental groups of pure pairs and Abhyankar?s lemma

被引:1
|
作者
Carvajal-Rojas, Javier [1 ]
Stabler, Axel [2 ]
机构
[1] Katholieke Univ Leuven, Heverlee, Belgium
[2] Univ Leipzig, Math Inst, Leipzig, Germany
基金
美国国家科学基金会;
关键词
pure F-regularity; PLT singularities; fundamental groups; splitting primes; Abhyankar?s lemma; F-SIGNATURE; BRANCH LOCUS; TEST IDEALS; PURITY; RINGS; SUBVARIETIES; BEHAVIOR;
D O I
10.2140/ant.2023.17.309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m, k) be a strictly local normal k-domain of positive characteristic and P a prime divisor on X = Spec R. We study the Galois category of finite covers over X that are at worst tamely ramified over P in the sense of Grothendieck-Murre. Assuming that (X, P) is a purely F-regular pair, our main result is that every Galois cover f : Y -> X in that Galois category satisfies that (f-1(P))red is a prime divisor. We shall explain why this should be thought as a (partial) generalization of a classical theorem due to S.S. Abhyankar regarding the etale-local structure of tamely ramified covers between normal schemes with respect to a divisor with normal crossings. Additionally, we investigate the formal consequences this result has on the structure of the fundamental group representing the Galois category. We also obtain a characteristic zero analog by reduction to positive characteristics following Bhatt-Gabber-Olsson's methods.
引用
收藏
页码:309 / 358
页数:51
相关论文
共 50 条
  • [41] Infinite groups whose group algebras satisfy the converse of Schur's lemma
    El Badry, Mohammed
    Abdallaoui, Mostafa Alaoui
    Haily, Abdelfattah
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (10)
  • [43] Pure braid subgroups of braided Thompson's groups
    Brady, Tom
    Burillo, Jose
    Cleary, Sean
    Stein, Melanie
    PUBLICACIONS MATEMATIQUES, 2008, 52 (01) : 57 - 89
  • [44] Certain pairs of irreducible characters of the groups S n and A n
    Belonogov V.A.
    Proceedings of the Steklov Institute of Mathematics, 2007, 257 (Suppl 1) : S10 - S46
  • [45] Critical pairs in abelian groups and Kemperman's structure theorem
    Lev, Vsevolod F.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (03) : 379 - 396
  • [46] E plus S Galaxy Pairs: are they the Precursors of Fossil Groups?
    Gruetzbauch, R.
    Annibali, F.
    Rampazzo, R.
    Zeilinger, W. W.
    GALAXIES IN ISOLATION: EXPLORING NATURE VERSUS NURTURE, 2010, 421 : 258 - 258
  • [47] Fundamental regions for certain finite groups in S-4.
    Price, HF
    AMERICAN JOURNAL OF MATHEMATICS, 1918, 40 : 108 - 112
  • [48] Fundamental groups of manifolds with S1-category 2
    J. C. Gómez-Larrañaga
    F. González-Acuña
    Wolfgang Heil
    Mathematische Zeitschrift, 2008, 259 : 419 - 432
  • [49] Plane curves and their fundamental groups: Generalizations of Uludag's construction
    Garber, David
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2003, 3 (01): : 593 - 622
  • [50] Fundamental groups of manifolds with S1-category 2
    Gomez-Larranaga, J. C.
    Gonzalez-Acuna, F.
    Heil, Wolfgang
    MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (02) : 419 - 432