Pose Attention-Guided Paired-Images Generation for Visible-Infrared Person Re-Identification

被引:8
|
作者
Qian, Yongheng [1 ]
Tang, Su-Kit [1 ]
机构
[1] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
关键词
Cross-modality person re-identification; pose-guided; attention mechanism; paired-images;
D O I
10.1109/LSP.2024.3354190
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A key challenge of visible-infrared person re-identification (VI-ReID) comes from the modality difference between visible and infrared images, which further causes large intra-person and small inter-person distances. Most existing methods design feature extractors and loss functions to bridge the modality gap. However, the unpaired-images constrain the VI-ReID model's ability to learn instance-level alignment features. Different from these methods, in this paper, we propose a pose attention-guided paired-images generation network (PAPG) from the standpoint of data augmentation. PAPG can generate cross-modality paired-images with shape and appearance consistency with the real image to perform instance-level feature alignment by minimizing the distances of every pair of images. Furthermore, our method alleviates data insufficient and reduces the risk of VI-ReID model overfitting. Comprehensive experiments conducted on two publicly available datasets validate the effectiveness and generalizability of PAPG. Especially, on the SYSU-MM01 dataset, our method accomplishes 7.76% and 5.87% gains in Rank-1 and mAP.
引用
收藏
页码:346 / 350
页数:5
相关论文
共 50 条
  • [41] Visible-infrared Person Re-identification with Human Body Parts Assistance
    Dai, Huangpeng
    Xie, Qing
    Li, Jiachen
    Ma, Yanchun
    Li, Lin
    Liu, Yongjian
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR '21), 2021, : 631 - 637
  • [42] Progressive Discriminative Feature Learning for Visible-Infrared Person Re-Identification
    Zhou, Feng
    Cheng, Zhuxuan
    Yang, Haitao
    Song, Yifeng
    Fu, Shengpeng
    ELECTRONICS, 2024, 13 (14)
  • [43] Visible-Infrared Person Re-Identification Via Feature Constrained Learning
    Zhang Jing
    Chen Guangfeng
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [44] Contrastive Learning with Information Compensation for Visible-Infrared Person Re-Identification
    Zhang, La
    Guo, Haiyun
    Zhao, Xu
    Sun, Jian
    Wang, Jinqiao
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1266 - 1271
  • [45] DynamicWeighted Gradient Reversal Network for Visible-infrared Person Re-identification
    Li, Chenghua
    Li, Zongze
    Sun, Jing
    Zhang, Yun
    Jiang, Xiaoping
    Zhang, Fan
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (01)
  • [46] Fine-grained Learning for Visible-Infrared Person Re-identification
    Qi, Mengzan
    Chan, Sixian
    Hang, Chen
    Zhang, Guixu
    Li, Zhi
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2417 - 2422
  • [47] Visible-infrared person re-identification using query related cluster
    赵倩倩
    WU Hanxiao
    HUANG Linhan
    ZHU Jianqing
    ZENG Huanqiang
    HighTechnologyLetters, 2023, 29 (02) : 194 - 205
  • [48] Counterfactual Intervention Feature Transfer for Visible-Infrared Person Re-identification
    Li, Xulin
    Lu, Yan
    Liu, Bin
    Liu, Yating
    Yin, Guojun
    Chu, Qi
    Huang, Jinyang
    Zhu, Feng
    Zhao, Rui
    Yu, Nenghai
    COMPUTER VISION, ECCV 2022, PT XXVI, 2022, 13686 : 381 - 398
  • [49] Learning with Twin Noisy Labels for Visible-Infrared Person Re-Identification
    Yang, Mouxing
    Huang, Zhenyu
    Hu, Peng
    Li, Taihao
    Lv, Jiancheng
    Peng, Xi
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 14288 - 14297
  • [50] Visible-Infrared Person Re-Identification via Partially Interactive Collaboration
    Zheng, Xiangtao
    Chen, Xiumei
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6951 - 6963