Pose Attention-Guided Paired-Images Generation for Visible-Infrared Person Re-Identification

被引:8
|
作者
Qian, Yongheng [1 ]
Tang, Su-Kit [1 ]
机构
[1] Macao Polytech Univ, Fac Appl Sci, Macau 999078, Peoples R China
关键词
Cross-modality person re-identification; pose-guided; attention mechanism; paired-images;
D O I
10.1109/LSP.2024.3354190
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A key challenge of visible-infrared person re-identification (VI-ReID) comes from the modality difference between visible and infrared images, which further causes large intra-person and small inter-person distances. Most existing methods design feature extractors and loss functions to bridge the modality gap. However, the unpaired-images constrain the VI-ReID model's ability to learn instance-level alignment features. Different from these methods, in this paper, we propose a pose attention-guided paired-images generation network (PAPG) from the standpoint of data augmentation. PAPG can generate cross-modality paired-images with shape and appearance consistency with the real image to perform instance-level feature alignment by minimizing the distances of every pair of images. Furthermore, our method alleviates data insufficient and reduces the risk of VI-ReID model overfitting. Comprehensive experiments conducted on two publicly available datasets validate the effectiveness and generalizability of PAPG. Especially, on the SYSU-MM01 dataset, our method accomplishes 7.76% and 5.87% gains in Rank-1 and mAP.
引用
收藏
页码:346 / 350
页数:5
相关论文
共 50 条
  • [31] Homogeneous and heterogeneous relational graph for visible-infrared person re-identification
    Feng, Yujian
    Chen, Feng
    Yu, Jian
    Ji, Yimu
    Wu, Fei
    Liu, Shangdon
    Jing, Xiao-Yuan
    PATTERN RECOGNITION, 2025, 158
  • [32] Stronger Heterogeneous Feature Learning for Visible-Infrared Person Re-Identification
    Hao Wang
    Xiaojun Bi
    Changdong Yu
    Neural Processing Letters, 56
  • [33] Pose matters: Pose guided graph attention network for person re-identification
    Zhijun HE
    Hongbo ZHAO
    Jianrong WANG
    Wenquan FENG
    Chinese Journal of Aeronautics , 2023, (05) : 447 - 464
  • [34] Pose matters: Pose guided graph attention network for person re-identification
    He, Zhijun
    Zhao, Hongbo
    Wang, Jianrong
    Feng, Wenquan
    CHINESE JOURNAL OF AERONAUTICS, 2023, 36 (05) : 447 - 464
  • [35] Stronger Heterogeneous Feature Learning for Visible-Infrared Person Re-Identification
    Wang, Hao
    Bi, Xiaojun
    Yu, Changdong
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [36] Cross-Modality Transformer for Visible-Infrared Person Re-Identification
    Jiang, Kongzhu
    Zhang, Tianzhu
    Liu, Xiang
    Qian, Bingqiao
    Zhang, Yongdong
    Wu, Feng
    COMPUTER VISION - ECCV 2022, PT XIV, 2022, 13674 : 480 - 496
  • [37] Unveiling the Power of CLIP in Unsupervised Visible-Infrared Person Re-Identification
    Chen, Zhong
    Zhang, Zhizhong
    Tan, Xin
    Qu, Yanyun
    Xie, Yuan
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3667 - 3675
  • [38] Robust Duality Learning for Unsupervised Visible-Infrared Person Re-Identification
    Li, Yongxiang
    Sun, Yuan
    Qin, Yang
    Peng, Dezhong
    Peng, Xi
    Hu, Peng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 1937 - 1948
  • [39] Implicit Discriminative Knowledge Learning for Visible-Infrared Person Re-Identification
    Ren, Kaijie
    Zhang, Lei
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 393 - 402
  • [40] A guidance and alignment transformer model for visible-infrared person re-identification
    Huang, Linyu
    Xue, Zijie
    Ning, Qian
    Guo, Yong
    Li, Yongsheng
    MULTIMEDIA SYSTEMS, 2025, 31 (02)