Multiple intersections traffic signal control based on cooperative multi-agent reinforcement learning

被引:6
|
作者
Liu, Junxiu [1 ]
Qin, Sheng [1 ]
Su, Min [1 ]
Luo, Yuling [1 ]
Wang, Yanhu [1 ]
Yang, Su [2 ]
机构
[1] Guangxi Normal Univ, Sch Elect & Informat Engn, Guangxi Key Lab Brain Inspired Comp & Intelligent, Guilin, Peoples R China
[2] Swansea Univ, Dept Comp Sci, Swansea, Wales
基金
中国国家自然科学基金;
关键词
Traffic signal control; Reinforcement learning; Multi-agent system; ALGORITHM; LIGHTS;
D O I
10.1016/j.ins.2023.119484
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For the multi-agent traffic signal controls, the traffic signal at each intersection is controlled by an independent agent. Since the control policy for each agent is dynamic, when the traffic scale is large, the adjustment of the agent's policy brings non-stationary effects over surrounding intersections, leading to the instability of the overall system. Therefore, there is the necessity to eliminate this non-stationarity effect to stabilize the multi-agent system. A collaborative multi agent reinforcement learning method is proposed in this work to enable the system to overcome the instability problem through a collaborative mechanism. Decentralized learning with limited communication is used to reduce the communication latency between agents. The Shapley value reward function is applied to comprehensively calculate the contribution of each agent to avoid the influence of reward function coefficient variation, thereby reducing unstable factors. The Kullback-Leibler divergence is then used to distinguish the current and historical policies, and the loss function is optimized to eliminate the environmental non-stationarity. Experimental results demonstrate that the average travel time and its standard deviation are reduced by using the Shapley value reward function and optimized loss function, respectively, and this work provides an alternative for traffic signal controls on multiple intersections.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Multi-agent cooperative learning research based on reinforcement learning
    Liu, Fei
    Zeng, Guangzhou
    2006 10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, PROCEEDINGS, VOLS 1 AND 2, 2006, : 1408 - 1413
  • [32] Mean Field Multi-Agent Reinforcement Learning Method for Area Traffic Signal Control
    Zhang, Zundong
    Zhang, Wei
    Liu, Yuke
    Xiong, Gang
    ELECTRONICS, 2023, 12 (22)
  • [33] Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control
    Chu, Tianshu
    Wang, Jie
    Codeca, Lara
    Li, Zhaojian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) : 1086 - 1095
  • [34] Extensible Hierarchical Multi-Agent Reinforcement-Learning Algorithm in Traffic Signal Control
    Zhao, Pengqian
    Yuan, Yuyu
    Guo, Ting
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [35] Multi-Agent Reinforcement Learning Based on Representational Communication for Large-Scale Traffic Signal Control
    Bokade, Rohit
    Jin, Xiaoning
    Amato, Christopher
    IEEE ACCESS, 2023, 11 : 47646 - 47658
  • [36] Design and realization of a new architecture based on multi-agent systems and reinforcement learning for traffic signal control
    Rezzai, Maha
    Dachry, Wafaa
    Moutaouakkil, Fouad
    Medromi, Hicham
    PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2018, : 18 - 23
  • [37] Microscopic Traffic Simulation by Cooperative Multi-agent Deep Reinforcement Learning
    Bacchiani, Giulio
    Molinari, Daniele
    Patander, Marco
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1547 - 1555
  • [38] Reinforcement Learning Approach for Cooperative Control of Multi-Agent Systems
    Javalera-Rincon, Valeria
    Puig Cayuela, Vicenc
    Morcego Seix, Bernardo
    Orduna-Cabrera, Fernando
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 80 - 91
  • [39] Multi-Agent Reinforcement Learning for Cooperative Adaptive Cruise Control
    Peake, Ashley
    McCalmon, Joe
    Raiford, Benjamin
    Liu, Tongtong
    Alqahtani, Sarra
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 15 - 22
  • [40] IALight: Importance-Aware Multi-Agent Reinforcement Learning for Arterial Traffic Cooperative Control
    Wei, Lu
    Zhang, Xiaoyan
    Fan, Lijun
    Gao, Lei
    Yang, Jian
    PROMET-TRAFFIC & TRANSPORTATION, 2025, 37 (01): : 151 - 169