A machine learning route between band mapping and band structure

被引:12
|
作者
Xian, R. Patrick [1 ,3 ]
Stimper, Vincent [2 ]
Zacharias, Marios [1 ,4 ]
Dendzik, Maciej [1 ,5 ]
Dong, Shuo [1 ]
Beaulieu, Samuel [1 ,6 ]
Scholkopf, Bernhard [2 ]
Wolf, Martin [1 ]
Rettig, Laurenz [1 ]
Carbogno, Christian [1 ]
Bauer, Stefan [2 ,7 ]
Ernstorfer, Ralph [1 ]
机构
[1] Fritz Haber Inst Max Planck Soc, Berlin, Germany
[2] Max Planck Inst Intelligent Syst, Dept Empir Inference, Tubingen, Germany
[3] UCL, Dept Mech Engn, London, England
[4] Univ Rennes, Inst FOTON, CNRS, INSA Rennes, Rennes, France
[5] KTH Royal Inst Technol, Dept Appl Phys, Stockholm, Sweden
[6] Univ Bordeaux, CELIA, CNRS, CEA, Talence, France
[7] KTH Royal Inst Technol, Div Decis & Control Syst, Stockholm, Sweden
来源
NATURE COMPUTATIONAL SCIENCE | 2023年 / 3卷 / 01期
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
ELECTRON-GAS; PHOTOEMISSION; REPRESENTATION; SPECTROSCOPY; SURFACE; SPACE;
D O I
10.1038/s43588-022-00382-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The electronic band structure and crystal structure are the two complementary identifiers of solid-state materials. Although convenient instruments and reconstruction algorithms have made large, empirical, crystal structure databases possible, extracting the quasiparticle dispersion (closely related to band structure) from photoemission band mapping data is currently limited by the available computational methods. To cope with the growing size and scale of photoemission data, here we develop a pipeline including probabilistic machine learning and the associated data processing, optimization and evaluation methods for band-structure reconstruction, leveraging theoretical calculations. The pipeline reconstructs all 14 valence bands of a semiconductor and shows excellent performance on benchmarks and other materials datasets. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales, while realizing a path towards integration with materials science databases. Our approach illustrates the potential of combining machine learning and domain knowledge for scalable feature extraction in multidimensional data.
引用
收藏
页码:101 / 114
页数:14
相关论文
共 50 条
  • [1] A machine learning route between band mapping and band structure
    R. Patrick Xian
    Vincent Stimper
    Marios Zacharias
    Maciej Dendzik
    Shuo Dong
    Samuel Beaulieu
    Bernhard Schölkopf
    Martin Wolf
    Laurenz Rettig
    Christian Carbogno
    Stefan Bauer
    Ralph Ernstorfer
    Nature Computational Science, 2023, 3 : 101 - 114
  • [2] Exploring materials band structure space with unsupervised machine learning
    Nunez, Matias
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 158 : 117 - 123
  • [3] Machine learning-based mapping of band gaps for metal halide perovskites
    Zhu, Xiemeng
    Xu, Jun
    Du, Shiyu
    Zhang, Yiming
    MATERIALS LETTERS, 2024, 355
  • [4] Unsupervised Machine Learning and Band Topology
    Scheurer, Mathias S.
    Slager, Robert-Jan
    PHYSICAL REVIEW LETTERS, 2020, 124 (22)
  • [5] Mapping between density of states and energy band gap for bismuth-based semiconductors via machine learning prediction
    Ling, Yang
    Chen, Zhengxin
    Li, Site
    Guan, Yunxiao
    Shi, Min
    Zhu, Jun
    Cheng, Zhihai
    Wu, Jiang
    Yin, Chaojie
    Bai, Mengjie
    FUEL, 2023, 331
  • [6] Machine-Learning-Assisted Materials Discovery from Electronic Band Structure
    Sinha, Prashant
    Joshi, Ablokit
    Dey, Rik
    Misra, Shikhar
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (22) : 8404 - 8413
  • [7] Excited-state band structure mapping
    Puppin, M.
    Nicholson, C. W.
    Monney, C.
    Deng, Y.
    Xian, R. P.
    Feldl, J.
    Dong, S.
    Dominguez, A.
    Hubener, H.
    Rubio, A.
    Wolf, M.
    Rettig, L.
    Ernstorfer, R.
    PHYSICAL REVIEW B, 2022, 105 (07)
  • [8] Mapping the band structure of a surface phononic crystal
    Maznev, A. A.
    Wright, O. B.
    Matsuda, O.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [9] Relationship between band populations and band structure in the three-band Hubbard model
    Avella, A.
    Mancini, F.
    Mancini, F. P.
    Plekhanov, E.
    INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS (SCES 2010), 2011, 273
  • [10] Predicting the Band Gaps of Inorganic Solids by Machine Learning
    Zhuo, Ya
    Tehrani, Aria Mansouri
    Brgoch, Jakoah
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (07): : 1668 - 1673