Turning Privacy-preserving Mechanisms against Federated Learning

被引:5
|
作者
Arazzi, Marco [1 ]
Conti, Mauro [2 ,3 ]
Nocera, Antonino [1 ]
Picek, Stjepan [3 ,4 ]
机构
[1] Univ Pavia, Pavia, Italy
[2] Univ Padua, Padua, Italy
[3] Delft Univ Technol, Delft, Netherlands
[4] Radboud Univ Nijmegen, Nijmegen, Netherlands
关键词
Federated Learning; Graph Neural Network; Model Poisoning; Privacy; Recommender Systems;
D O I
10.1145/3576915.3623114
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, researchers have successfully employed Graph Neural Networks (GNNs) to build enhanced recommender systems due to their capability to learn patterns from the interaction between involved entities. In addition, previous studies have investigated federated learning as the main solution to enable a native privacy-preserving mechanism for the construction of global GNN models without collecting sensitive data into a single computation unit. Still, privacy issues may arise as the analysis of local model updates produced by the federated clients can return information related to sensitive local data. For this reason, researchers proposed solutions that combine federated learning with Differential Privacy strategies and community-driven approaches, which involve combining data from neighbor clients to make the individual local updates less dependent on local sensitive data. In this paper, we identify a crucial security flaw in such a configuration and design an attack capable of deceiving state-of-the-art defenses for federated learning. The proposed attack includes two operating modes, the first one focusing on convergence inhibition (Adversarial Mode), and the second one aiming at building a deceptive rating injection on the global federated model (Backdoor Mode). The experimental results show the effectiveness of our attack in both its modes, returning on average 60% performance detriment in all the tests on Adversarial Mode and fully effective backdoors in 93% of cases for the tests performed on Backdoor Mode.
引用
收藏
页码:1482 / 1495
页数:14
相关论文
共 50 条
  • [21] PPFLV: privacy-preserving federated learning with verifiability
    Zhou, Qun
    Shen, Wenting
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12727 - 12743
  • [22] Contribution Measurement in Privacy-Preserving Federated Learning
    Hsu, Ruei-hau
    Yu, Yi-an
    Su, Hsuan-cheng
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2024, 40 (06) : 1173 - 1196
  • [23] Privacy-Preserving Federated Learning in Fog Computing
    Zhou, Chunyi
    Fu, Anmin
    Yu, Shui
    Yang, Wei
    Wang, Huaqun
    Zhang, Yuqing
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (11): : 10782 - 10793
  • [24] Federated Learning for Privacy-Preserving Speaker Recognition
    Woubie, Abraham
    Backstrom, Tom
    IEEE ACCESS, 2021, 9 : 149477 - 149485
  • [25] Privacy-Preserving Decentralized Aggregation for Federated Learning
    Jeon, Beomyeol
    Ferdous, S. M.
    Rahmant, Muntasir Raihan
    Walid, Anwar
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [26] GAIN: Decentralized Privacy-Preserving Federated Learning
    Jiang, Changsong
    Xu, Chunxiang
    Cao, Chenchen
    Chen, Kefei
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 78
  • [27] Privacy-Preserving Federated Learning via Disentanglement
    Zhou, Wenjie
    Li, Piji
    Han, Zhaoyang
    Lu, Xiaozhen
    Li, Juan
    Ren, Zhaochun
    Liu, Zhe
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3606 - 3615
  • [28] Privacy-preserving Decentralized Federated Deep Learning
    Zhu, Xudong
    Li, Hui
    PROCEEDINGS OF ACM TURING AWARD CELEBRATION CONFERENCE, ACM TURC 2021, 2021, : 33 - 38
  • [29] PRIVACY-PRESERVING SERVICES USING FEDERATED LEARNING
    Taylor, Paul
    Kiss, Stephanie
    Gullon, Lucy
    Yearling, David
    Journal of the Institute of Telecommunications Professionals, 2022, 16 : 16 - 22
  • [30] Privacy-Preserving and Reliable Distributed Federated Learning
    Dong, Yipeng
    Zhang, Lei
    Xu, Lin
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT I, 2024, 14487 : 130 - 149