Minimum Trotterization Formulas for a Time-Dependent Hamiltonian

被引:5
|
作者
Ikeda, Tatsuhiko N. [1 ,2 ,3 ]
Abrar, Asir [4 ]
Chuang, Isaac L. [5 ]
Sugiura, Sho [4 ,6 ]
机构
[1] RIKEN Ctr Quantum Comp, Saitama 3510198, Japan
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[4] NTT Res Inc, Phys & Informat Lab, 940 Stewart Dr, Sunnyvale, CA 94085 USA
[5] MIT, Codesign Ctr Quantum Advantage, Dept Phys, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[6] MIT, Lab Nucl Sci, Cambridge, MA 02139 USA
来源
QUANTUM | 2023年 / 7卷
关键词
DECOMPOSITION;
D O I
10.22331/q-2023-11-06-1168
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a time propagator e delta tA for dura-tion delta t consists of two noncommuting parts A = X + Y, Trotterization approximately decomposes the propagator into a prod-uct of exponentials of X and Y. Vari-ous Trotterization formulas have been uti-lized in quantum and classical comput-ers, but much less is known for the Trot-terization with the time-dependent gen-erator A(t). Here, for A(t) given by the sum of two operators X and Y with time-dependent coefficients A(t) = x(t)X + y(t)Y, we develop a systematic approach to derive high-order Trotterization for-mulas with minimum possible exp onen-tials. In particular, we obtain fourth-order and sixth-order Trotterization formulas in-volving seven and fifteen exponentials, re-spectively, which are no more than those for time-independent generators. We also construct another fourth-order formula consisting of nine exponentials having a smaller error coefficient. Finally, we nu-merically benchmark the fourth-order for-mulas in a Hamiltonian simulation for a quantum Ising chain, showing that the 9 -exponential formula accompanies smaller errors per local quantum gate than the well-known Suzuki formula.
引用
收藏
页数:15
相关论文
共 50 条
  • [32] Time-dependent general quantum quadratic Hamiltonian system
    Yeon, Kyu Hwang
    Um, Chung In
    George, Thomas F.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 68 (05): : 521081 - 521089
  • [33] Estimation of a general time-dependent Hamiltonian for a single qubit
    L. E. de Clercq
    R. Oswald
    C. Flühmann
    B. Keitch
    D. Kienzler
    H. -Y. Lo
    M. Marinelli
    D. Nadlinger
    V. Negnevitsky
    J. P. Home
    Nature Communications, 7
  • [34] NOETHER SYMMETRIES AND INTEGRABILITY IN TIME-DEPENDENT HAMILTONIAN MECHANICS
    Jovanovic, Bozidar
    THEORETICAL AND APPLIED MECHANICS, 2016, 43 (02) : 255 - 273
  • [35] Time-dependent normal form Hamiltonian for dynamical equilibria
    Thylwe, KE
    Dankowicz, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13): : 3707 - 3722
  • [36] Propagator of a time-dependent unbound quadratic Hamiltonian system
    Yeon, KH
    Kim, HJ
    Um, CI
    George, TF
    Pandey, LN
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1996, 111 (08): : 963 - 971
  • [37] LOCALIZATION AND DEPHASING EFFECTS IN A TIME-DEPENDENT ANDERSON HAMILTONIAN
    EVENSKY, DA
    SCALETTAR, RT
    WOLYNES, PG
    JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (03): : 1149 - 1154
  • [38] On time-dependent hamiltonian realizations of planar and nonplanar systems
    Esen, Ogul
    Guha, Partha
    arXiv, 2017,
  • [39] Estimation of a general time-dependent Hamiltonian for a single qubit
    de Clercq, L. E.
    Oswald, R.
    Fluehmann, C.
    Keitch, B.
    Kienzler, D.
    Lo, H. -Y.
    Marinelli, M.
    Nadlinger, D.
    Negnevitsky, V.
    Home, J. P.
    NATURE COMMUNICATIONS, 2016, 7
  • [40] On time-dependent Hamiltonian realizations of planar and nonplanar systems
    Esen, Ogul
    Guha, Partha
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 127 : 32 - 45