Minimum Trotterization Formulas for a Time-Dependent Hamiltonian

被引:5
|
作者
Ikeda, Tatsuhiko N. [1 ,2 ,3 ]
Abrar, Asir [4 ]
Chuang, Isaac L. [5 ]
Sugiura, Sho [4 ,6 ]
机构
[1] RIKEN Ctr Quantum Comp, Saitama 3510198, Japan
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[4] NTT Res Inc, Phys & Informat Lab, 940 Stewart Dr, Sunnyvale, CA 94085 USA
[5] MIT, Codesign Ctr Quantum Advantage, Dept Phys, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[6] MIT, Lab Nucl Sci, Cambridge, MA 02139 USA
来源
QUANTUM | 2023年 / 7卷
关键词
DECOMPOSITION;
D O I
10.22331/q-2023-11-06-1168
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a time propagator e delta tA for dura-tion delta t consists of two noncommuting parts A = X + Y, Trotterization approximately decomposes the propagator into a prod-uct of exponentials of X and Y. Vari-ous Trotterization formulas have been uti-lized in quantum and classical comput-ers, but much less is known for the Trot-terization with the time-dependent gen-erator A(t). Here, for A(t) given by the sum of two operators X and Y with time-dependent coefficients A(t) = x(t)X + y(t)Y, we develop a systematic approach to derive high-order Trotterization for-mulas with minimum possible exp onen-tials. In particular, we obtain fourth-order and sixth-order Trotterization formulas in-volving seven and fifteen exponentials, re-spectively, which are no more than those for time-independent generators. We also construct another fourth-order formula consisting of nine exponentials having a smaller error coefficient. Finally, we nu-merically benchmark the fourth-order for-mulas in a Hamiltonian simulation for a quantum Ising chain, showing that the 9 -exponential formula accompanies smaller errors per local quantum gate than the well-known Suzuki formula.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] CHAOTIC SCATTERING IN TIME-DEPENDENT HAMILTONIAN SYSTEMS
    Lai, Ying-Cheng
    Grebogi, Celso
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03): : 667 - 679
  • [22] Numerical quantum propagation with time-dependent Hamiltonian
    Zhu, WS
    Zhao, XS
    JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (21): : 9536 - 9545
  • [23] TIME-MINIMUM ROUTES IN TIME-DEPENDENT NETWORKS
    FUJIMURA, K
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1995, 11 (03): : 343 - 351
  • [24] Time-dependent formulation of the linear unitary transformation and the time evolution of general time-dependent quadratic Hamiltonian systems
    Liu, WS
    ANNALS OF PHYSICS, 2004, 312 (02) : 480 - 491
  • [25] CONVERGENCE OF SEPARATION (GALERKIN) FORMULAS IN TIME-DEPENDENT EQUATIONS
    GAJEWSKI, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1972, 52 (10): : T372 - T374
  • [26] MINIMUM WEIGHT PATHS IN TIME-DEPENDENT NETWORKS
    ORDA, A
    ROM, R
    NETWORKS, 1991, 21 (03) : 295 - 319
  • [27] GEOMETRY OF THE DYNAMICAL-SYSTEMS WITH TIME-DEPENDENT CONSTRAINTS AND TIME-DEPENDENT HAMILTONIAN - AN APPROACH TOWARDS QUANTIZATION
    HAMOUI, A
    LICHNEROWICZ, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (04) : 923 - 931
  • [28] Time-Dependent Hamiltonian Reconstruction Using Continuous Weak
    Siva, Karthik
    Koolstra, Gerwin
    Steinmetz, John
    Livingston, William P.
    Das, Debmalya
    Chen, L.
    Kreikebaum, J. M.
    Stevenson, N. J.
    Junger, C.
    Santiago, D. I.
    Siddiqi, I.
    Jordan, A. N.
    PRX QUANTUM, 2023, 4 (04):
  • [29] SOLUTION OF A SIMPLE LIOUVILLE EQUATION WITH A TIME-DEPENDENT HAMILTONIAN
    VICTORIA, J
    MURIEL, A
    AMERICAN JOURNAL OF PHYSICS, 1971, 39 (07) : 845 - &
  • [30] Time-dependent linear Hamiltonian systems and quantum mechanics
    Rezende, J
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (02) : 117 - 127