Choosing shape parameters for regression in reproducing kernel Hilbert space and variable selection

被引:0
|
作者
Tan, Xin [1 ]
Xia, Yingcun [2 ]
Kong, Efang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Peoples R China
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
General Gaussian RBF kernel; kernel ridge regression (KRR); oracle property; reproducing kernel Hilbert space (RKHS); variable selection;
D O I
10.1080/10485252.2023.2164890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Gaussian radial basis function (RBF) is a widely used kernel function in kernel-based methods. The parameter in RBF, referred to as the shape parameter, plays an essential role in model fitting. In this paper, we propose a method to select the shape parameters for the general Gaussian RBF kernel. It can simultaneously serve for variable selection and regression function estimation. For the former, asymptotic consistency is established; for the latter, the estimation is as efficient as if the true or optimal shape parameters are known. Simulations and real examples are used to illustrate the method's performance of prediction by comparing it with other popular methods.
引用
收藏
页码:514 / 528
页数:15
相关论文
共 50 条
  • [41] Ensemble forecasts in reproducing kernel Hilbert space family
    Dufee, Benjamin
    Hug, Berenger
    Memin, Etienne
    Tissot, Gilles
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 459
  • [42] Generalized Mahalanobis depth in the reproducing kernel Hilbert space
    Hu, Yonggang
    Wang, Yong
    Wu, Yi
    Li, Qiang
    Hou, Chenping
    STATISTICAL PAPERS, 2011, 52 (03) : 511 - 522
  • [43] Local Subspace Classifier in Reproducing Kernel Hilbert Space
    Zou, DF
    ADVANCES IN MULTIMODAL INTERFACES - ICMI 2000, PROCEEDINGS, 2000, 1948 : 434 - 441
  • [44] A Reproducing Kernel Hilbert Space Framework for Functional Classification
    Sang, Peijun
    Kashlak, Adam B.
    Kong, Linglong
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 1000 - 1008
  • [45] Hyperellipsoidal Statistical Classifications in a Reproducing Kernel Hilbert Space
    Liang, Xun
    Ni, Zhihao
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06): : 968 - 975
  • [46] A New Application Of Reproducing Kernel Hilbert Space Method
    Akgul, A.
    Sakar, M. Giyas
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [47] A reproducing kernel Hilbert space approach for speech enhancement
    Gauci, Oliver
    Debono, Carl J.
    Micallef, Paul
    2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 831 - 835
  • [48] Modelling Policies in MDPs in Reproducing Kernel Hilbert Space
    Lever, Guy
    Stafford, Ronnie
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 590 - 598
  • [49] THE REPRODUCING KERNEL HILBERT SPACE BASED ON WAVELET TRANSFORM
    Deng, Cai-Xia
    Li, Shuai
    Fu, Zuo-Xian
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 370 - 374
  • [50] Sampling analysis in the complex reproducing kernel Hilbert space
    Li, Bing-Zhao
    Ji, Qing-Hua
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2015, 26 : 109 - 120