Choosing shape parameters for regression in reproducing kernel Hilbert space and variable selection

被引:0
|
作者
Tan, Xin [1 ]
Xia, Yingcun [2 ]
Kong, Efang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Peoples R China
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
General Gaussian RBF kernel; kernel ridge regression (KRR); oracle property; reproducing kernel Hilbert space (RKHS); variable selection;
D O I
10.1080/10485252.2023.2164890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Gaussian radial basis function (RBF) is a widely used kernel function in kernel-based methods. The parameter in RBF, referred to as the shape parameter, plays an essential role in model fitting. In this paper, we propose a method to select the shape parameters for the general Gaussian RBF kernel. It can simultaneously serve for variable selection and regression function estimation. For the former, asymptotic consistency is established; for the latter, the estimation is as efficient as if the true or optimal shape parameters are known. Simulations and real examples are used to illustrate the method's performance of prediction by comparing it with other popular methods.
引用
收藏
页码:514 / 528
页数:15
相关论文
共 50 条
  • [31] Rainfall-runoff modeling through regression in the reproducing kernel Hilbert space algorithm
    Safari, Mir Jafar Sadegh
    Arashloo, Shervin Rahimzadeh
    Mehr, Ali Danandeh
    JOURNAL OF HYDROLOGY, 2020, 587
  • [32] Asynchronous functional linear regression models for longitudinal data in reproducing kernel Hilbert space
    Li, Ting
    Zhu, Huichen
    Li, Tengfei
    Zhu, Hongtu
    BIOMETRICS, 2023, 79 (03) : 1880 - 1895
  • [33] On the Vγ dimension for regression in Reproducing Kernel Hilbert Spaces
    Evgeniou, T
    Pontil, M
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 1999, 1720 : 106 - 117
  • [34] FUNCTIONAL SLICED INVERSE REGRESSION IN A REPRODUCING KERNEL HILBERT SPACE: A THEORETICAL CONNECTION TO FUNCTIONAL LINEAR REGRESSION
    Wang, Guochang
    Lian, Heng
    STATISTICA SINICA, 2020, 30 (01) : 17 - 33
  • [35] Reproducing Kernel Hilbert Space and Coalescence Hidden-variable Fractal Interpolation Functions
    Prasad, Srijanani Anurag
    DEMONSTRATIO MATHEMATICA, 2019, 52 (01) : 410 - 427
  • [36] Kernel PLS Regression II: Kernel Partial Least Squares Regression by Projecting Both Independent and Dependent Variables into Reproducing Kernel Hilbert Space
    Pei, Yan
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 2031 - 2036
  • [37] Reproducing kernel Hilbert spaces and variable metric algorithms in PDE-constrained shape optimization
    Eigel, M.
    Sturm, K.
    OPTIMIZATION METHODS & SOFTWARE, 2018, 33 (02): : 268 - 296
  • [38] Sampling Theory in Abstract Reproducing Kernel Hilbert Space
    Yoon Mi Hong
    Jong Min Kim
    Kil H. Kwon
    Sampling Theory in Signal and Image Processing, 2007, 6 (1): : 109 - 121
  • [39] On some problems for operators on the reproducing kernel Hilbert space
    Garayev, M. T.
    Guediri, H.
    Gurdal, M.
    Alsahli, G. M.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (11): : 2059 - 2077
  • [40] An explicit construction of a reproducing Gaussian kernel Hilbert space
    Xu, Jian-Wu
    Pokharel, Puskal P.
    Jeong, Kyu-Hwa
    Principe, Jose C.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5431 - 5434