FedMBC: Personalized federated learning via mutually beneficial collaboration

被引:6
|
作者
Gong, Yanxia [1 ]
Li, Xianxian [1 ]
Wang, Li-e [1 ]
机构
[1] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Personalized federated learning; Collaboration; Aggregation; AGGREGATION;
D O I
10.1016/j.comcom.2023.04.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data heterogeneity is a challenge of federated learning. Traditional federated learning aims to obtain a global model, but a single global model cannot meet the needs of all clients when the clients' local data are distributed differently. To alleviate this problem, we propose a mutually beneficial collaboration method for personalized federated learning (FedMBC), which provides each client with a personalized model by enhancing collaboration among similar clients. First, we use the task layer outputs and soft outputs of the client model to measure the similarity of the clients. Then, for each client, we adopt a dynamic aggregation method based on the similarity of clients on the server in each communication round to aggregate a model suitable for its local data distribution. That is, the aggregated model is a personalized model of the client. Furthermore, since the data heterogeneity and the different clients selected for each communication round may lead to slow convergence of the aggregated model, we adopt the aggregated model from the previous round in the local update stage of the client to accelerate the convergence of the model. Finally, we compare our method with different federated learning algorithms on various datasets in a variety of settings, and the results show that our method is superior to them in terms of test performance and communication efficiency. In particular, when the distributions of data among clients are diverse, FedMBC can improve the test accuracy by approximately 2.3% and reduce the number of communication rounds required by up to 35% compared with FedAvg on the CIFAR-10 dataset.
引用
收藏
页码:108 / 117
页数:10
相关论文
共 50 条
  • [31] Collaboration Management for Federated Learning
    Schlegel, Marius
    Scheliga, Daniel
    Sattler, Kai-Uwe
    Seeland, Marco
    Maeder, Patrick
    2024 IEEE 40TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOP, ICDEW, 2024, : 291 - 300
  • [32] A federated learning attack method based on edge collaboration via cloud
    Yang, Jie
    Baker, Thar
    Gill, Sukhpal Singh
    Yang, Xiaochuan
    Han, Weifeng
    Li, Yuanzhang
    SOFTWARE-PRACTICE & EXPERIENCE, 2024, 54 (07): : 1257 - 1274
  • [33] Prototype Contrastive Learning for Personalized Federated Learning
    Deng, Siqi
    Yang, Liu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III, 2023, 14256 : 529 - 540
  • [34] LIBERAL LEARNING AND MANAGEMENT - A MUTUALLY BENEFICIAL RELATIONSHIP
    BUTLER, DW
    LIBERAL EDUCATION, 1986, 72 (01): : 15 - 19
  • [35] Personalized Federated Learning with Parameter Propagation
    Wu, Jun
    Bao, Wenxuan
    Ainsworth, Elizabeth
    He, Jingrui
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2594 - 2605
  • [36] Personalized Federated Contrastive Learning for Recommendation
    Wang, Shanfeng
    Zhou, Yuxi
    Fan, Xiaolong
    Li, Jianzhao
    Lei, Zexuan
    Gong, Maoguo
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2025,
  • [37] Personalized Federated Learning with Semisupervised Distillation
    Li, Xianxian
    Gong, Yanxia
    Liang, Yuan
    Wang, Li-e
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [38] Gradient Free Personalized Federated Learning
    Chen, Haoyu
    Zhang, Yuxin
    Zhao, Jin
    Wang, Xin
    Xu, Yuedong
    53RD INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2024, 2024, : 971 - 980
  • [39] Methods and Prospects of Personalized Federated Learning
    Sun, Yanhua
    Wang, Zihang
    Liu, Chang
    Yang, Ruizhe
    Li, Meng
    Wang, Zhuwei
    Computer Engineering and Applications, 2024, 60 (20) : 68 - 83
  • [40] Clustered Graph Federated Personalized Learning
    Gauthier, Francois
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    Huang, Yih-Fang
    Kuh, Anthony
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 744 - 748