FedMBC: Personalized federated learning via mutually beneficial collaboration

被引:6
|
作者
Gong, Yanxia [1 ]
Li, Xianxian [1 ]
Wang, Li-e [1 ]
机构
[1] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Personalized federated learning; Collaboration; Aggregation; AGGREGATION;
D O I
10.1016/j.comcom.2023.04.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data heterogeneity is a challenge of federated learning. Traditional federated learning aims to obtain a global model, but a single global model cannot meet the needs of all clients when the clients' local data are distributed differently. To alleviate this problem, we propose a mutually beneficial collaboration method for personalized federated learning (FedMBC), which provides each client with a personalized model by enhancing collaboration among similar clients. First, we use the task layer outputs and soft outputs of the client model to measure the similarity of the clients. Then, for each client, we adopt a dynamic aggregation method based on the similarity of clients on the server in each communication round to aggregate a model suitable for its local data distribution. That is, the aggregated model is a personalized model of the client. Furthermore, since the data heterogeneity and the different clients selected for each communication round may lead to slow convergence of the aggregated model, we adopt the aggregated model from the previous round in the local update stage of the client to accelerate the convergence of the model. Finally, we compare our method with different federated learning algorithms on various datasets in a variety of settings, and the results show that our method is superior to them in terms of test performance and communication efficiency. In particular, when the distributions of data among clients are diverse, FedMBC can improve the test accuracy by approximately 2.3% and reduce the number of communication rounds required by up to 35% compared with FedAvg on the CIFAR-10 dataset.
引用
收藏
页码:108 / 117
页数:10
相关论文
共 50 条
  • [11] pFedGF: Enabling Personalized Federated Learning via Gradient Fusion
    Wu, Xinghao
    Niu, Jianwei
    Liu, Xuefeng
    Ren, Tao
    Huang, Zhangmin
    Li, Zhetao
    2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2022), 2022, : 639 - 649
  • [12] PFEDEDIT: Personalized Federated Learning via Automated Model Editing
    Yuan, Haolin
    Paul, William
    Aucott, John
    Burlina, Philippe
    Cao, Yinzhi
    COMPUTER VISION - ECCV 2024, PT LXXIX, 2025, 15137 : 91 - 107
  • [14] FedSeq: Personalized Federated Learning via Sequential Layer Expansion in Representation Learning
    Jang, Jae Won
    Choi, Bong Jun
    Applied Sciences (Switzerland), 2024, 14 (24):
  • [15] Sparse Personalized Federated Learning
    Liu, Xiaofeng
    Li, Yinchuan
    Wang, Qing
    Zhang, Xu
    Shao, Yunfeng
    Geng, Yanhui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12027 - 12041
  • [16] Benchmark for Personalized Federated Learning
    Matsuda, Koji
    Sasaki, Yuya
    Xiao, Chuan
    Onizuka, Makoto
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2024, 5 : 2 - 13
  • [17] Personalized Subgraph Federated Learning
    Baek, Jinheon
    Jeong, Wonyong
    Jin, Jiongdao
    Yoon, Jaehong
    Hwang, Sung Ju
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [18] Toward Personalized Federated Learning
    Tan, Alysa Ziying
    Yu, Han
    Cui, Lizhen
    Yang, Qiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 9587 - 9603
  • [19] A Personalized Quantum Federated Learning
    Gurung, Dev
    Pokhrel, Shiva Raj
    PROCEEDINGS OF THE 8TH ASIA-PACIFIC WORKSHOP ON NETWORKING, APNET 2024, 2024, : 175 - 176
  • [20] Bold but Cautious: Unlocking the Potential of Personalized Federated Learning through Cautiously Aggressive Collaboration
    Wu, Xinghao
    Liu, Xuefeng
    Niu, Jianwei
    Zhu, Guogang
    Tang, Shaojie
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 19318 - 19327