Diversity Knowledge Distillation for LiDAR-Based 3-D Object Detection

被引:2
|
作者
Ning, Kanglin [1 ]
Liu, Yanfei [1 ]
Su, Yanzhao [1 ]
Jiang, Ke [1 ]
机构
[1] High Tech Inst Xian, Dept Basic Courses, Xian 710025, Peoples R China
关键词
Detectors; Three-dimensional displays; Point cloud compression; Feature extraction; Laser radar; Object detection; Sensors; 3-D displays; detectors; knowledge distillation; laser radar; object detection;
D O I
10.1109/JSEN.2023.3241624
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The light detection and ranging (LiDAR) sensor enables high-quality 3-D object detection, which is critical in autonomous driving applications. However, accurate detectors require more computing resources owing to the discreteness and disorder of point cloud data. To resolve this problem, we propose diversity knowledge distillation or 3-D object detection, which distills the knowledge from a two-stage high-accuracy detector to a faster one-stage detector. This framework includes methods to match the bounding box predictions of the one-stage student and two-stage teacher detectors with inconsistent numbers. Accordingly, we design a response-based distillation method to perform distillation. Then, a diversity feature score is proposed to guide the student in selecting the parts that need more attention on the middle-layer feature map and the region of interest (RoI) output by the distillation process. Experiments demonstrate that the proposed method can enhance the performance of a one-stage detector without increasing the computation of the mode in the test stage.
引用
收藏
页码:11181 / 11193
页数:13
相关论文
共 50 条
  • [31] SARPNET: Shape attention regional proposal network for liDAR-based 3D object detection
    Ye, Yangyang
    Chen, Houjin
    Zhang, Chi
    Hao, Xiaoli
    Zhang, Zhaoxiang
    NEUROCOMPUTING, 2020, 379 : 53 - 63
  • [32] Multi-modal information fusion for LiDAR-based 3D object detection framework
    Ruixin Ma
    Yong Yin
    Jing Chen
    Rihao Chang
    Multimedia Tools and Applications, 2024, 83 : 7995 - 8012
  • [33] Cost-Aware Evaluation and Model Scaling for LiDAR-Based 3D Object Detection
    Wang, Xiaofang
    Kitani, Kris M.
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 9260 - 9266
  • [34] PLA-LiDAR: Physical Laser Attacks against LiDAR-based 3D Object Detection in Autonomous Vehicle
    Jin, Zizhi
    Ji, Xiaoyu
    Cheng, Yushi
    Yang, Bo
    Yan, Chen
    Xu, Wenyuan
    2023 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, SP, 2023, : 1822 - 1839
  • [35] RTL3D: real-time LIDAR-based 3D object detection with sparse CNN
    Yan, Lin
    Liu, Kai
    Belyaev, Evgeny
    Duan, Meiyu
    IET COMPUTER VISION, 2020, 14 (05) : 224 - 232
  • [36] CMDA: Cross-Modal and Domain Adversarial Adaptation for LiDAR-Based 3D Object Detection
    Chang, Gyusam
    Roh, Wonseok
    Jang, Sujin
    Lee, Dongwook
    Ji, Daehyun
    Oh, Gyeongrok
    Park, Jinsun
    Kim, Jinkyu
    Kim, Sangpil
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2, 2024, : 972 - 980
  • [37] Cross-Domain Generalization for LiDAR-Based 3D Object Detection in Infrastructure and Vehicle Environments
    Zhi, Peng
    Jiang, Longhao
    Yang, Xiao
    Wang, Xingzheng
    Li, Hung-Wei
    Zhou, Qingguo
    Li, Kuan-Ching
    Ivanovic, Mirjana
    SENSORS, 2025, 25 (03)
  • [38] A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving
    Zamanakos, Georgios
    Tsochatzidis, Lazaros
    Amanatiadis, Angelos
    Pratikakis, Ioannis
    COMPUTERS & GRAPHICS-UK, 2021, 99 : 153 - 181
  • [39] RGB Image- and Lidar-Based 3D Object Detection Under Multiple Lighting Scenarios
    Wentao Chen
    Wei Tian
    Xiang Xie
    Wilhelm Stork
    Automotive Innovation, 2022, 5 : 251 - 259
  • [40] RGB Image- and Lidar-Based 3D Object Detection Under Multiple Lighting Scenarios
    Chen, Wentao
    Tian, Wei
    Xie, Xiang
    Stork, Wilhelm
    AUTOMOTIVE INNOVATION, 2022, 5 (03) : 251 - 259