Diversity Knowledge Distillation for LiDAR-Based 3-D Object Detection

被引:2
|
作者
Ning, Kanglin [1 ]
Liu, Yanfei [1 ]
Su, Yanzhao [1 ]
Jiang, Ke [1 ]
机构
[1] High Tech Inst Xian, Dept Basic Courses, Xian 710025, Peoples R China
关键词
Detectors; Three-dimensional displays; Point cloud compression; Feature extraction; Laser radar; Object detection; Sensors; 3-D displays; detectors; knowledge distillation; laser radar; object detection;
D O I
10.1109/JSEN.2023.3241624
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The light detection and ranging (LiDAR) sensor enables high-quality 3-D object detection, which is critical in autonomous driving applications. However, accurate detectors require more computing resources owing to the discreteness and disorder of point cloud data. To resolve this problem, we propose diversity knowledge distillation or 3-D object detection, which distills the knowledge from a two-stage high-accuracy detector to a faster one-stage detector. This framework includes methods to match the bounding box predictions of the one-stage student and two-stage teacher detectors with inconsistent numbers. Accordingly, we design a response-based distillation method to perform distillation. Then, a diversity feature score is proposed to guide the student in selecting the parts that need more attention on the middle-layer feature map and the region of interest (RoI) output by the distillation process. Experiments demonstrate that the proposed method can enhance the performance of a one-stage detector without increasing the computation of the mode in the test stage.
引用
收藏
页码:11181 / 11193
页数:13
相关论文
共 50 条
  • [21] Residual MBConv Submanifold Module for 3D LiDAR-based Object Detection
    Guo, Lie
    Huang, Liang
    Zhao, Yibing
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1720 - 1724
  • [22] On Onboard LiDAR-Based Flying Object Detection
    Vrba, Matous
    Walter, Viktor
    Pritzl, Vaclav
    Pliska, Michal
    Baca, Tomas
    Spurny, Vojtech
    Hert, Daniel
    Saska, Martin
    IEEE TRANSACTIONS ON ROBOTICS, 2025, 41 : 593 - 611
  • [23] TEMPORAL AXIAL ATTENTION FOR LIDAR-BASED 3D OBJECT DETECTION IN AUTONOMOUS DRIVING
    Carranza-Garcia, Manuel
    Riquelme, Jose C.
    Zakhor, Avideh
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 201 - 205
  • [24] ProposalContrast: Unsupervised Pre-training for LiDAR-Based 3D Object Detection
    Yin, Junbo
    Zhou, Dingfu
    Zhang, Liangjun
    Fang, Jin
    Xu, Cheng-Zhong
    Shen, Jianbing
    Wang, Wenguan
    COMPUTER VISION, ECCV 2022, PT XXXIX, 2022, 13699 : 17 - 33
  • [25] UAV Position Estimation using a LiDAR-based 3D Object Detection Method
    Olawoye, Uthman
    Gross, Jason N.
    2023 IEEE/ION POSITION, LOCATION AND NAVIGATION SYMPOSIUM, PLANS, 2023, : 46 - 51
  • [26] LiDAR-Based 3D Temporal Object Detection via Motion-Aware LiDAR Feature Fusion
    Park, Gyuhee
    Koh, Junho
    Kim, Jisong
    Moon, Jun
    Choi, Jun Won
    SENSORS, 2024, 24 (14)
  • [27] Gradual Batch Alternation for Effective Domain Adaptation in LiDAR-Based 3D Object Detection
    Rochan, Mrigank
    Chen, Xingxin
    Grandhi, Alaap
    Corral-Soto, Eduardo R.
    Liu, Bingbing
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 2213 - 2219
  • [28] Multi-modal information fusion for LiDAR-based 3D object detection framework
    Ma, Ruixin
    Yin, Yong
    Chen, Jing
    Chang, Rihao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 7995 - 8012
  • [29] Stereo RGB and Deeper LIDAR-Based Network for 3D Object Detection in Autonomous Driving
    He, Qingdong
    Wang, Zhengning
    Zeng, Hao
    Zeng, Yi
    Liu, Yijun
    Liu, Shuaicheng
    Zeng, Bing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 152 - 162
  • [30] ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection
    Xu, Jiaolong
    Wang, Guojun
    Zhang, Xiao
    Wan, Guowei
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 74 - 83