Elastic Deformation of Optical Coherence Tomography Images of Diabetic Macular Edema for Deep-Learning Models Training: How Far to Go?

被引:1
|
作者
Bar-David, Daniel [1 ]
Bar-David, Laura [2 ]
Shapira, Yinon [3 ]
Leibu, Rina
Dori, Dalia
Gebara, Aseel
Schneor, Ronit [1 ]
Fischer, Anath [1 ]
Soudry, Shiri [4 ,5 ]
机构
[1] Technion Israel Inst Technol, Fac Mech Engn, IL-3200003 Haifa, Israel
[2] Rambam Hlth Care Campus, Dept Ophthalmol, Haifa, Israel
[3] Carmel Hosp, Dept Ophthalmol, IL-3436212 Haifa, Israel
[4] Rambam Hlth Care Campus, Clin Res Inst Rambam, IL-3109601 Haifa, Israel
[5] Technion Israel Inst Technol, Ruth & Bruce Rappaport Fac Med, IL-3525433 Haifa, Israel
关键词
Data augmentation; OCT; deep learning; DME; elastic deformation; AUTOMATED DETECTION; SEGMENTATION; DISEASES; FLUID;
D O I
10.1109/JTEHM.2023.3294904
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: To explore the clinical validity of elastic deformation of optical coherence tomography (OCT) images for data augmentation in the development of deep-learning model for detection of diabetic macular edema (DME). Methods: Prospective evaluation of OCT images of DME (n = 320) subject to elastic transformation, with the deformation intensity represented by (sigma). Three sets of images, each comprising 100 pairs of scans (100 original & 100 modified), were grouped according to the range of (sigma), including low-, medium- and high-degree of augmentation; (sigma = 1-6), (sigma = 7-12), and (sigma = 13-18), respectively. Three retina specialists evaluated all datasets in a blinded manner and designated each image as 'original' versus 'modified'. The rate of assignment of 'original' value to modified images (false-negative) was determined for each grader in each dataset. Results: The false-negative rates ranged between 71-77% for the low-, 63-76% for the medium-, and 50-75% for the high-augmentation categories. The corresponding rates of correct identification of original images ranged between 75-85% (p>0.05) in the low-, 73-85% (p>0.05 for graders 1 & 2, p = 0.01 for grader 3) in the medium-, and 81-91% (p<0.005) in the high-augmentation categories. In the subcategory (sigma = 7-9) the false-negative rates were 93-83%, whereas the rates of correctly identifying original images ranged between 89-99% (p>0.05 for all graders). Conclusions: Deformation of low-medium intensity (sigma = 1-9) may be applied without compromising OCT image representativeness in DME.
引用
收藏
页码:487 / 494
页数:8
相关论文
共 50 条
  • [21] Etiology of Macular Edema Defined by Deep Learning in Optical Coherence Tomography Scans
    Padilla-Pantoja, Fabio Daniel
    Quijano Nieto, Bernardo Alfonso
    Perdomo Charry, Oscar Julian
    Sanchez Legarda, Yeison David
    Gonzalez Osorio, Fabio Augusto
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (09)
  • [22] Identifying Diabetic Macular Edema and Other Retinal Diseases by Optical Coherence Tomography Image and Multiscale Deep Learning
    Zhang, Quan
    Liu, Zhiang
    Li, Jiaxu
    Liu, Guohua
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2020, 13 : 4787 - 4800
  • [23] A Multi-Task Deep-Learning System to Classify Diabetic Macular Edema for Different Optical Coherence Tomography Devices: A Multi-Center Analysis
    Cheung, Carol Yim-Lui
    Tang, Fangyao
    Ran, Anran
    Tan, Gavin Siew Wei
    Ting, Daniel S. W.
    Chen, Haoyu
    Ma, Hongjie
    Tang, Shibo
    Leng, Theodore
    Kakavand, Schahrouz
    Mannil, Suria S.
    Chang, Robert
    Liew, Gerald
    Gopinath, Bamini
    Wong, Tien Y.
    Wang, Xi
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [24] Optical Coherence Tomography Imaging for Diabetic Retinopathy and Macular Edema
    John C. BuAbbud
    Motasem M. Al-latayfeh
    Jennifer K. Sun
    Current Diabetes Reports, 2010, 10 : 264 - 269
  • [25] Optical Coherence Tomography Imaging for Diabetic Retinopathy and Macular Edema
    BuAbbud, John C.
    Al-latayfeh, Motasem M.
    Sun, Jennifer K.
    CURRENT DIABETES REPORTS, 2010, 10 (04) : 264 - 269
  • [26] Spectral Domain Optical Coherence Tomography in Diabetic Macular Edema
    Pournaras, Jean-Antoine C.
    Erginay, Ali
    Lazrak, Zineb
    Gaudric, Alain
    Massin, Pascale
    OPHTHALMIC SURGERY LASERS & IMAGING, 2009, 40 (06) : 548 - 553
  • [27] Quantitative assessment of diabetic macular edema with optical coherence tomography
    Hee, MR
    Puliafito, CA
    Duker, JS
    Reichel, E
    Coker, JG
    Wilkins, JR
    Schuman, JS
    Swanson, EA
    Fujimoto, JG
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1996, 37 (03) : 4377 - 4377
  • [28] Visual correlations of optical coherence tomography of diabetic macular edema
    Kim, BY
    Kaiser, PK
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46
  • [29] ROLE OF OPTICAL COHERENCE TOMOGRAPHY IN DIABETIC MACULAR EDEMA SCREENING
    Palarie, N.
    Pasenco, T. V.
    Vudu, L. T.
    EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2017, 27 (03) : E118 - E118
  • [30] Optical coherence tomography classification of diabetic cystoid macular edema
    Helmy, Yasser M.
    Allah, Heba R. Atta
    CLINICAL OPHTHALMOLOGY, 2013, 7 : 1731 - 1737